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Abstract

A forward intensity approach for the prediction of corporate defaults over dif-

ferent future periods is proposed. Maximum pseudo-likelihood analysis based on

this new approach is then conducted on a large sample of the US industrial and fi-

nancial firms spanning the period 1991-2009 on a monthly basis. Several frequently

used factors and firm-specific attributes are shown to be useful for prediction at

both short and long horizons. The prediction is very accurate for shorter horizons.

The accuracy deteriorates somewhat when the horizon is increased to two or three

years, but its performance still remains reasonable. The forward intensity model is

also amenable to aggregation, which allows analysts to assess default behavior at

the portfolio and/or economy level.
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1 Introduction

Understanding term structure of default probabilities is critical to credit risk manage-

ment, macro policy making and financial regulation. Firms may have totally different

short-term and long-term credit risk profiles due to their debt structures, liquidity posi-

tions and other attributes. Major credit rating agencies usually provide both short-term

and long-term credit ratings for corporates. However, the academic literature has been

lacking as far as the term structure of defaults is concerned. Credit risk modeling can be

grouped into two large categories – structural and reduced-form approaches. We tackle

the issue of default term structures using an reduced-form approach.

The first generation of reduced-form models dates back to Beaver (1966, 1968) and

Altman (1968). These studies mainly relied on discriminant analysis whose output is

credit scores which offer only ordinal rankings. The second generation of reduced-form

models, e.g., Ohlson (1980) and Zmijewski (1984), mostly employed binary response mod-

els such as logit and probit regressions. Such methods assess a firm’s likelihood of default

in the next period but remain silent for default prediction beyond one period. In a recent

paper, Campbell, et al (2008) employed a multiple logit model to predict bankruptcy

for different time horizons. Recent development in reduced-form credit risk modeling is

dominated by duration analysis, such as Shumway (2001), Chava and Jarrow (2004), Hil-

legeist, et al (2004). Duffie, et al (2007) proposed a doubly stochastic Poisson intensity

approach to default modeling in which state variables governing Poisson intensities are

assumed to follow a specific high-dimensional time-series dynamic.1 Specifying the time

dynamics of the state variables is simply for the purpose of multiperiod default prediction.

In this paper, we propose a new reduced-form approach based on a forward intensity

construction to estimate a firm’s default probabilities for different periods ahead. Our

construction takes into account both defaults/bankruptcies and other types of firm exits

such as mergers and acquisitions. Our method can estimate forward default probabilities

and cumulative default probabilities for longer than one future period (month, quarter

or year). We can estimate term structure of default probabilities solely using the known

data at the time of performing prediction, and can circumvent the difficult task of speci-

fying time dynamics for covariates. Our forward intensity approach can be implemented

by maximum pseudo-likelihood estimation. Particularly, the pseudo-likelihood function

is decomposable to independent components, making it less numerically intensive in es-

timation. Moreover, the nature of the pseudo-likelihood function makes the parameter

estimations corresponding to different forward periods non-sequential so that the numer-

ical implementation of the model for multiple period is easily parallelizable.

1Duffie, et al (2007) employed two state variables common to all firms and two specific to individual

firms. If a sample contains 10,000 firms, the dimension of the state variables will become 20,002.
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Our empirical analysis uses a large sample of the US listed companies (both industrial

and financial) covering more than 12,000 firms and over 1,000,000 firm-month observa-

tions for the period from 1991 to 2009 on a monthly basis. We examine the effects

of several frequently used macroeconomic factors and firm-specific attributes on compa-

nies’ one-month forward default probabilities starting one month ahead to as long as 36

months ahead. We find that a firm’s leverage, liquidity, profitability and volatility are

four important attributes affecting its forward default probabilities for almost all the hori-

zons considered. Interestingly, our empirical results suggest that large companies seem

to be able to delay defaults, but cannot fully avoid defaults simply because of the size

advantage.

We also consider the influence of state variables in terms of both level and trend.

Intuitively, a firm attribute’s historical average (over some period) can distinguish it

cross-sectionally from other firms in a particular dimension. The current value of a firm’s

attribute relative to its own historical average can also reveal its current momentum

and suggests a direction of its future movements. Our empirical analysis indeed reveals

that firm’s distance-to-default (a commonly used variable in default analysis), along with

several other variables, has effect in both dimensions. Although the trending aspect of a

firm’s attribute contains valuable information and enhances prediction power, its effect

seems to be short-term except for distance-to-default.

Our forward intensity approach actually coincides with that of Duffie, et al (2007)

when the application is limited to the one month ahead prediction. This is not at all

surprising because forward intensity is basically spot intensity for one period ahead. Our

implementation, however, uses more state variables and also considers the possibility of

trending effect. The likelihood ratio test and individual t statistics suggest that both the

additional variables and the trending treatment have highly significant impacts.

We also conduct a prediction accuracy analysis based on the commonly employed

cumulative accuracy profile. The results show that the forward intensity approach is

able to generate accurate predictions for short horizons such as one and three months.

Their in-sample accuracy ratios exceed 90%, and the conclusion remains robust when

the sample is split into two cross-sectionally and use one set to predict the other. The

same conclusion holds true when an out-of-sample analysis is performed by rolling the

sample forward over time. When the prediction horizon is extended to six months and

one year, the accuracy ratios drop slightly to the 80% range. If the prediction horizon

is further extended to two (or three) years, the performance drops to the 70% (or 60%)

range. Note that the accuracy ratio for a totally uninformative model is supposed to be

0%. Again, the findings for longer prediction horizons are robust when the sample is split

cross-sectionally and rolling over time so that the analysis is out-of-sample.
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Our forward intensity model can naturally employ the convolution-based default ag-

gregation algorithm of Duan (2010) to to study portfolio behavior. We are able to show

that the predicted number of defaults is quite close to the actual numbers of defaults for

the US corporate sector over the intended period when the prediction period is one and

three months. For longer prediction periods, the performance is not as good but is still

able to reflect the overall default pattern over the past twenty years.

Following Duan’s (2010) treatment of distance-to-default, we are able to include fi-

nancial firms in our analysis. Particularly, we single out Lehman Brothers as a case

of interest. The analysis reveals that three months prior to Lehman Brothers’s filing

of Chapter 11 bankruptcy, the model has already suggested a substantially raised term

structure of default probabilities. For example, the estimated probability of default in one

year, predicted three months prior to Lehman’s bankruptcy, had already reached about

10%. Interestingly, the peak forward default probability moved to around the third to

fourth month, suggesting that default month will most likely coincide with its actual

bankruptcy filing month.

2 A forward intensity approach to multiperiod de-

fault prediction

The Poisson process with stochastic intensities is often used to model the occurrence of

defaults/bankruptcies. By the so-called doubly stochastic process approach, the stochas-

tic intensity is a function of some state variables, either observable or unobservable, but

the dynamics of these state variables are not affected by default. Since the relationship is

unidirectional from state variables to the Poisson process, such a doubly stochastic model

is easy to work with both in terms of computing quantities of interest and estimating the

model parameters. This approach has been widely applied in the literature, for example,

Duffie, et al (2007).

Mergers/aquisitions happen routinely. A public company traded in a stock exchange

can be delisted for a variety of reasons. Naturally, default/bankruptcy is not the sole

reason that a firm leaves the sample. Considering other forms of exit is critical in the

analysis of default, because a default cannot happen after a firm has already exited due to

other reasons. Exit due to reasons other than default/bankruptcy is usually modeled as

another doubly stochastic process independent of the default process. It is worth noting

that default and other form of exit are in principle mutually exclusive events. Thus,

they are competing as opposed to independent risks. When they are modeled as two

independent Poisson processes, the probability of joint occurrence happens to equal zero,

blurring the distinction between competing and independent risks.
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Default and other exit for the i-th firm in a group are governed by two indepen-

dent doubly stochastic Poisson processes – Mit with stochastic intensity λit and Lit with

stochastic intensity φit. λit and φit are instantaneous intensities and are only known

at or after time t. Applying the standard argument, the probability of a standing firm

surviving the period [t, t + τ ] equals Et

[
exp

(
−
∫ t+τ
t

(λis + φis)ds
)]

. The probability of

default in the period [t, t+τ ] is Et

[∫ t+τ
t

exp
(
−
∫ s
t

(λiu + φiu)du
)
λisds

]
. These quantities

can only be computed with the exact knowledge of the stochastic processes: λit and φit.

We contend that a more convenient way is to use the device of forward intensity rate.

First we define the spot combined exit intensity for default and other exits together

for the period [t, t+ τ ], and through which we deduce the forward exit intensity. Denote

by Fit(τ) the time-t conditional distribution function of the combined exit time evaluated

at t+ τ . We assume that it is differentiable.

ψit(τ) ≡ − ln(1− Fit(τ))

τ
= −

lnEt

[
exp

(
−
∫ t+τ
t

(λis + φis)ds
)]

τ
. (1)

Obviously, exp[−ψit(τ)τ ] becomes the survival probability over [t, t+ τ ].

Assume that ψit(τ) is differentiable. The forward exit intensity is defined as

git(τ) ≡ F ′it(τ)

1− Fit(τ)
= ψit(τ) + ψ′it(τ)τ. (2)

Thus, ψit(τ)τ =
∫ τ

0
git(s)ds. Finally, we define the forward default intensity censored by

other forms of exit. Denote the default time of the i-th firm by τDi and the corresponding

combined exit time by τCi. Naturally, τCi ≤ τDi. Let Pt(·) denote the time-t conditional

probability.

fit(τ) ≡ eψit(τ)τ lim
∆t→0

Pt(t+ τ < τDi = τCi ≤ t+ τ + ∆t)

∆t
(3)

= eψit(τ)τ lim
∆t→0

Et

[∫ t+τ+∆t

t+τ
exp

(
−
∫ s
t

(λiu + φiu)du
)
λisds

]
∆t

, (4)

and the default probability over [t, t+ τ ] becomes
∫ τ

0
e−ψit(s)sfit(s)ds.

Although we motivate the forward intensity model using a reduced-form approach

involving doubly stochastic Poisson processes, the method conceptually encompasses the

structural approach or a combination. For example, a combination can be (1) default

is driven by a structural argument of asset value falling below promised debt payment,

and (2) other forms of exit occur due to a Poisson event. Duffie and Lando (2001)

argued that instantaneous default intensity does not exist unless the default time is

totally inaccessible. Unfortunately, the structure model with the asset value driven by
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a diffusion process (or jump-diffusion process) is accessible (or neither accessible nor

totally inaccessible). Therefore, such structural models cannot be given an intensity

interpretation. Chen (2007), however, showed that forward intensity exists even for those

structural models. Therefore, the forward intensity approach is not only more natural for

multiperiod default prediction as will be demonstrated later, but also conceptually more

widely applicable.

Instead of modeling λit and φit as some functions of state variables available at time

t, we will later deal with fit(τ) and git(τ) directly as functions of state variables available

at time t and the horizon of interest, τ . Moreover, we need to ensure that fit(τ) ≤ git(τ)

to reflect the fact that default intensity must be no greater than combined exit intensity.

Let Xit = (xit,1, xit,2, · · · , xit,k) be the set of the state variables (stochastic and/or

deterministic) that affect the forward intensities for the i-th firm. These variables may

include two types of variables: macroeconomic factors and firm-specific attributes. There-

fore, Xit and Xjt may share some common elements. fit(τ) and git(τ) can be all kinds

of functions of Xit as long as they are non-negative and git(τ) ≥ fit(τ). For convenience,

we let

fit(τ) = exp (α0(τ) + α1(τ)xit,1 + α2(τ)xit,2 + · · ·αk(τ)xit,k) (5)

git(τ) = fit(τ) + exp (β0(τ) + β1(τ)xit,1 + β2(τ)xit,2 + · · · βk(τ)xit,k) (6)

Note that fit(τ) and git(τ) do not need to share the same set of state variables. This can

be achieved in the above specification by setting some coefficients to zero.

We need to discretize the model for empirical implementation, and for that we set one

month as the basic time interval, i.e., ∆t = 1/12. To simplify notation, from this point

onwards, we view t = 0,∆t, 2∆t, · · · and τ = 0,∆t, 2∆t, · · · as time sequences with an

increment of ∆t. The forward intensities in the discretized version, i.e., fit(τ) and git(τ),

should be understood as at time t for the period [t+ τ, t+ τ + ∆t].

When τ = 0, our forward intensity set-up is the same as the spot intensity formulation

of Duffie, et al (2007). The reason for using the forward intensity formulation is to deal

with multiperiod default predictions without having to specify the dynamics for state

variables, which in turn avoid estimating the state variable models and simulating these

variables in computing predicted default probabilities.

We are interested in the following quantities in the discretized model for the firms

that have not yet exited at time t. They can all be computed from fit(τ) and git(τ).

1. Forward default probability at time t for the period [t+ τ, t+ τ + ∆t]:

Pt(t+ τ < τDi = τCi ≤ t+ τ + ∆t) = e−ψit(τ)τ
(
1− e−fit(τ)∆t

)
(7)
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2. Forward combined exit probability at time t for the period [t+ τ, t+ τ + ∆t]:

Pt(t+ τ < τCi ≤ t+ τ + ∆t) = e−ψit(τ)τ
(
1− e−git(τ)∆t

)
(8)

3. Cumulative default probability at time t for the period [t, t+ τ ]:

Pt(t < τDi = τCi ≤ t+ τ) =

τ/∆t∑
j=1

e−ψit((j−1)∆t)(j−1)∆t
(
1− e−fit((j−1)∆t)∆t

)
(9)

4. Spot combined exit intensity at time t for the period [t, t+ τ ]:

ψit(τ) =
1

τ
[ψit(τ −∆t)(τ −∆t) + git(τ −∆t)∆t] (10)

Note that ψit(0) need not be specified because it is irrelevant.

3 Estimating the forward intensity model

3.1 Overlapped pseudo-likelihood function

First, we extend our notations used in the preceding section. Suppose that our sample

period is [0, T ] and is divided into T/∆t periods. Let N be the total number of companies.

For firm i, we let t0i be the first month that it appeared in the sample. τDi is the default

time and τCi is the combined exit time. If a firm exits due to default, then τDi = τCi,

and otherwise, τCi < τDi. The covariates Xit consist of two parts Xit = (Wt, Uit). Wt

are the factors common to all firms, and Uit are the firm-specific variables which cease

to be observable after a company exits the sample. Suppose τ is the intended prediction

horizon measured in terms of the number of basic periods with each equal to ∆t.

We denote the model’s parameter set by α = {α(0), α(∆t), · · · , α(τ −∆t)} and β =

{β(0), β(∆t), · · · , β(τ −∆t)}. The pseudo-likelihood function for prediction horizon τ is

Lτ (α, β; τC , τD, X)

=

T/∆t−1∏
j=0

P (τCi ∧ ((j + 1)∆t+ τ), τDi ∧ ((j + 1)∆t+ τ), i = 1, 2, · · · , N |Xj∆t;α, β)
(11)

Note that when τ > 1, the above pseudo-likelihood is constructed with observations from

overlapped periods. As an example, when τ = 2, default over the next two periods

corresponding to one data point is correlated with default used in the next data point

(one period after) due to two observations sharing a common one period.
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We assume

P (τCi ∧ ((j + 1)∆t+ τ), τDi ∧ ((j + 1)∆t+ τ), i = 1, 2, · · · , N |Xj∆t;α, β)

=
N∏
i=1

P (τCi ∧ ((j + 1)∆t+ τ), τDi ∧ ((j + 1)∆t+ τ)|Xi,j∆t;α, β)
(12)

This assumption lets firms’ survival and default probabilities depend only upon the com-

mon factors and firm-specific attributes. Hence, different firms are conditionally indepen-

dent among themselves. If there is any dependency, it must arise from their sharing of the

common factors and/or any correlation among the firm-specific attributes. This assump-

tion is in essence similar to the doubly stochastic assumption (also known as conditional

independence assumption) used in the traditional intensity model. One firm’s exit does

not feed back to the state variables. Neither does it influence the exit probabilities of

other firms. Under this assumption, the pseudo-likelihood function can be expressed as

Lτ (α, β; τC , τD, X) =
N∏
i=1

T/∆t−1∏
j=0

Pτ,i,j(α, β) (13)

where

Pτ,i,j(α, β) ≡P (τCi ∧ ((j + 1)∆t+ τ), τDi ∧ ((j + 1)∆t+ τ)|Xi,j∆t;α, β)

=1{t0i≤j∆t,τCi>j∆t+τ} exp

−
τ/∆t−1∑
k=0

gi,j∆t(k∆t)∆t


+ 1{t0i≤j∆t,τDi=τCi≤j∆t+τ} exp

−
τDi/∆t−j−2∑

k=0

gi,j∆t(k∆t)∆t


× (1− exp{−fi,j∆t(τDi − (j + 1)∆t)∆t})

+ 1{t0i≤j∆t,τDi>τCi,τCi≤j∆t+τ} exp

−
τCi/∆t−j−2∑

k=0

gi,j∆t(k∆t)∆t


× (exp{−fi,j∆t(τCi − (j + 1)∆t)∆t} − exp{−gi,j∆t(τCi − (j + 1)∆t)∆t})

+ 1{t0i>j∆t} + 1{τCi≤j∆t}

The first term on the right-hand side of the above expression is the probability of surviving

both forms of exit. The second term is the probability that firm defaults. The third term

is the probability that firm exits due to other reasons. If the firm does not appear in the

sample in month t, then we set Pτ,i,j to 1, which is transformed to 0 in the pseudo-log-

likelihood function.

The pseudo-likelihood function Lτ can be numerically maximized to obtain estimates

α̂ and β̂. Due to the overlapping nature of the pseudo-likelihood function, the associated
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inference is not immediately clear, however. This “overlapped” pseudo-likelihood func-

tion, for example, violates the standard assumption. We thus derive the large sample

properties in Appendix A.

3.2 Decomposable pseudo-likelihood function

Because the pseudo-likelihood function (13) is the product of separate terms involving

α and β, we can maximize its two components separately to obtain α̂ and β̂. The two

components are

L α
τ = Lτ (α; τC , τD, X) =

N∏
i=1

T/∆t−1∏
j=0

L α
τ,i,j (14)

L β
τ = Lτ (β; τC , τD, X) =

N∏
i=1

T/∆t−1∏
j=0

L β
τ,i,j (15)

where

L α
τ,i,j =1{t0i≤j∆t,τCi>j∆t+τ} exp

−
τ/∆t−1∑
k=0

fi,j∆t(k∆t)∆t


+ 1{t0i≤j∆t,τDi=τCi≤j∆t+τ} exp

−
τDi/∆t−j−2∑

k=0

fi,j∆t(k∆t)∆t


× (1− exp{−fi,j∆t(τDi − (j + 1)∆t)∆t})

+ 1{t0i≤j∆t,τDi>τCi,τCi≤j∆t+τ} exp

−
τDi/∆t−j−2∑

k=0

fi,j∆t(k∆t)∆t


× exp{−fi,j∆t(τDi − (j + 1)∆t)∆t}

+ 1{t0i>j∆t} + 1{τCi≤j∆t}

L β
τ,i,j =1{t0i≤j∆t,τCi>j∆t+τ} exp

−
τ/∆t−1∑
k=0

hi,j∆t(k∆t)∆t


+ 1{t0i≤j∆t,τDi=τCi≤j∆t+τ} exp

−
τDi/∆t−j−2∑

k=0

hi,j∆t(k∆t)∆t


+ 1{t0i≤j∆t,τDi>τCi,τCi≤j∆t+τ} exp

−
τDi/∆t−j−2∑

k=0

hi,j∆t(k∆t)∆t


× (1− exp{−hi,j∆t(τDi − (j + 1)∆t)∆t})

+ 1{t0i>j∆t} + 1{τCi≤j∆t}
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and

hit(τ) = git(τ)− fit(τ) = exp (β0(τ) + β1(τ)xit,1 + β2(τ)xit,2 + · · · βk(τ)xit,k)

Note that equations (14)-(15) can be further decomposed to separate terms involving

α(s) and β(s) for different s. Therefore, we can obtain the maximum pseudo-likelihood

estimates α̂ and β̂ without having to perform estimation sequentially from shorter to

longer prediction horizons. The horizon-specific pseudo-likelihood functions are

Lα(s) =
N∏
i=1

(T−s)/∆t−1∏
j=0

Lα(s),i,j, s = 0,∆t, · · · , τ −∆t (16)

Lβ(s) =
N∏
i=1

(T−s)/∆t−1∏
j=0

Lβ(s),i,j, s = 0,∆t, · · · , τ −∆t (17)

where

Lα(s),i,j =1{t0i≤j∆t,τCi>(j+1)∆t+s} exp {−fi,j∆t(s)∆t}
+ 1{t0i≤j∆t,τDi=τCi=(j+1)∆t+s}(1− exp {−fi,j∆t(s)∆t})
+ 1{t0i≤j∆t,τDi 6=τCi,τCi=(j+1)∆t+s} exp {−fi,j∆t(s)∆t}
+ 1{t0i>j∆t} + 1{τCi<(j+1)∆t+s}

Lβ(s),i,j =1{t0i≤j∆t,τCi>(j+1)∆t+s} exp {−hi,j∆t(s)∆t}
+ 1{t0i≤j∆t,τDi=τCi=(j+1)∆t+s}

+ 1{t0i≤j∆t,τDi 6=τCi,τCi=(j+1)∆t+s}(1− exp {−hi,j∆t(s)∆t})
+ 1{t0i>j∆t} + 1{τCi<(j+1)∆t+s}

4 Data and the choice of covariates

4.1 Data

Our data set is a large sample of U.S. public firms over the period from 1991 to 2009.

The stock market data are from the CRSP monthly and daily files. We only include

companies traded on NYSE, AMEX and Nasdaq (exchange code 1 to 3) with share

code 10 and 11 (common stocks). The accounting data are taken from the Compustat

quarterly file. Since the accounting statements are usually released several months after

the reporting period, we lag all the accounting items by three months. If the accounting

variable is missing, we substitute it with the closest observation prior to the relevant date.

Our default and bankruptcy data are obtained from three different sources. We use the

CRSP delisting code “574” for bankruptcy. We also identify a delisting as bankruptcy
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if the delisting reason is “02” in Compustat.2 A default or bankruptcy is also recorded

if the CACS function of Bloomberg indicates so. Similar to Shumway (2001), firms that

defaulted or filed for any type of bankruptcy within 1 year of delisting are considered

to be in default status by the time of delisting. There are altogether 12,196 companies

(including financial firms) giving rise to 1,030,305 firm-month observations in our sample.

Table 1 summarizes the number of active companies, defaults/bankruptcies and other

exits each year. The summary statistics show, as expected, that the overall default rate

is low ranging between 0.18% and 3.2% of the firms in each sample year. Other forms of

exit are significantly higher, ranging from 5.16% to 13.63%.

4.2 Covariates

We use the following set of common factors and firm-specific attributes to characterize

the forward intensity functions:

1. SP500: trailing 1-year return on the S&P500 index.

2. Treasury rate: 3-month US Treasury bill rate.

3. DTD: firm’s distance-to-default, which is a volatility adjusted leverage measure

based on Merton (1974). The DTD is estimated once a month using the preceding

one year of daily equity values. To include financial firms in our analysis, we follow

Duan’s (2010) adjustment method to include firm’s liabilities beyond short- and

long-term debts. The model parameters are estimated by the transformed-data

maximum likelihood method in Duan (1994, 2000). The parameter estimates are

then used to compute DTDs and the last valid DTD is the one used as the covariate.

The methodological details are provided in Appendix B.

4. CASH/TA: ratio of the sum of cash and short-term investments to the total assets.

5. NI/TA: ratio of net income to the total assets.

6. SIZE: log of the ratio of firm’s market equity value to the average market equity

value of the S&P500 firm.

7. M/B: market-to-book asset ratio.

8. SIGMA: 1-year idiosyncratic volatility, calculated by regressing individual monthly

stock return on the value-weighted CRSP monthly return over the preceding 12

months. SIGMA is the standard deviation of the residuals from the regression.

2Duffie, et al (2007) regarded both “02” and “03” as bankruptcy. However, we have confirmed with

Standard & Poor’s that code “03” stands for liquidation for any reasons.
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Following Shumway (2001), we treat SIGMA as missing if there are less than 12

monthly returns.

Our DTD differs from that of Duffie, et al (2007) in two aspects. First, they estimated

the parameters of the Merton (1974) model for each firm once and for all using the entire

sample (monthly data) instead of using a moving window approach, which in a sense

has inappropriately peeked into the future. Second, we have adopted a different debt

specification by incorporating other liabilities, which in turn allows us to include financial

firms.

The first three variables were used in Duffie, et al (2007). They also used firm’s own

one-year trailing return as a covariate, but our analysis shows that it is insignificant after

incorporating other variables. We also considered several other covariates frequently used

in the previous literature, but didn’t include them due to either lack of significance or

creating a serious missing value problem.

Interestingly, we discover that both trend and level of some firm-specific attributes

play an important role. It is not at all surprising to find that momentum plays a role

in predicting defaults. For example, other things being equal, two firms with same DTD

are likely to face different default likelihoods if one firm’s DTD has been deteriorating in

the past few months whereas the other firm has experienced improvement in its DTD.

We compute the average of a variable over the preceding 12 months, and denote it by

the subscript “AVG” to reflect the level of such variable. We also calculate the difference

between its current value and the 12-month moving average, and denote it by the subscript

“DIF”. The “DIF” measure proxies for the trending aspect of a variable. We found both

trend and level measures for DTD, CASH/TA, NI/TA and SIZE to be significant. To

dampen the effect of outliers, we winsorize each of the above firm-specific attributes. We

cap all the observations at the 999-th permille value. Similarly, all values are subject to

the floor at the first permille value. The summary statistics and correlation matrix for

the firm-specific attributes are reported in Tables 2-3.

5 Empirical results

5.1 Parameter estimates

We present in Tables 4-5 the maximum pseudo-likelihood estimates for α(τ) and β(τ)

with different τ ranging from 1 month to 36 months. To show the impact of various

factors/attributes on firms’ default probabilities, we plot in Figure 1 the estimated coeffi-

cients corresponding to different prediction horizons. Also plotted is the 90% confidence

interval for each variable used in the forward default intensity function.
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In terms of the trailing 1-year S&P500 index return, the forward default intensity

coefficients for most of the prediction horizons are positive but their magnitudes first

decrease with the prediction horizon and then rise later. What it suggests is that when

the equity market performs well, firms are more likely to default, a result seems counter-

intuitive. This could be caused by the correlation between the S&P500 index return and

other firm-specific attributes. For example, as suggested by Duffie, et al (2009), that

“after boom years in the stock market, a firm’s distance to default overstates its financial

health”. Hence, the S&P500 index return simply serves as a correction.

The forward default intensities are estimated to decrease with the 3-month Treasury

bill rate in the short run but to increase in the long run. The signs of the coefficients at

short horizons are consistent with the fact that the short-term interest rate is typically

lowered by the US Federal Reserve to stimulate the economic growth during recessions

and increased to fight inflation during expansions. The opposite signs of the coefficients

may simply reflect the business cycle effect.

The estimated forward default intensities decrease with firm’s moving average of

distances-to-default for all prediction horizons. Although our distance-to-default measure

is somewhat different, this finding is consistent with those reported in the literature such

as Hillegeist, et al (2004), Duffie, et al (2007), and Bharath and Shumway (2008), show-

ing that distance-to-default is a highly useful attribute for differentiating a firm’s credit

risk from other firms. Moreover, we find that forward default intensity also decreases in a

significant manner with the distance-to-default trend for all prediction horizons analyzed.

To our knowledge, this is the first study that the distance-to-default trend measure is

used to characterize default likelihood.

The CASH/TA variable captures the liquidity position of a company. Other things

being equal, a firm with more liquid assets available to meet interest and principal pay-

ments is more likely to avoid default. The forward default intensities are estimated to

decrease with both the trend and level of CASH/TA, but the trend measure loses its

significance when the prediction horizon becomes longer. This suggests that the liquidity

trend measure is more indicative of short-run default likelihood.

We measure a firm’s profitability by the NI/TA ratio. A firm’s ultimate existence

is based on the profitability of its business. This measure is expected to play a role in

the default/bankruptcy analysis. Bharath and Shumway (2008) found that this measure

provides significant predicting power in addition to distance-to- default. We also find that

estimated forward default intensities are strongly decreasing in the level of profitability

for all prediction horizons considered. The trend measure for profitability turns out to

be significant for shorter prediction horizons.

13



Firm size has long been regarded as an important predictor for default/bankruptcy

ever since the early days of reduced-form modeling. Large firms are usually thought to

have more diversified business lines and financial flexibility than smaller firms, which may

help them better weather financial distress. Large firms are also more likely to be bailed

out by governments because they may be “too big to fail”. Our results show that forward

default intensities do decrease with size in the short run but however increase in the long

run. This means that other things being equal, large companies can postpone defaults

rather than fully avoid them. The trend measure of size can be viewed as a proxy for a

firm’s growth pattern. The forward intensities are found to be decreasing in this trend

measure only for short prediction horizons, indicating that fast growth may lower default

likelihood in the short run.

Market-to-book asset ratio is a mixed measure for the market mis-valuation and future

growth opportunities. If the market mis-valuation effect dominates, then the forward

default intensities should be increasing in market-to-book asset ratio. Otherwise, the

signs of the coefficients should be negative. Our results show that after controlling for

other covariates, estimated forward intensities are increasing in market-to-book asset ratio

for up to the 2-year prediction horizon, which is consistent with Campbell, et al (2008).

Such finding supports the mis-valuation explanation. The effect of market-to-book asset

ratio on default probability can be further studied by decomposing this measure into mis-

valuation and growth option components using the methodology developed in Rhodes-

Kropf, et al (2005). However, our interest here is not on finding why market-to-book

asset ratio is significant and will leave this matter to future research.

The idiosyncratic standard deviation measure is first employed by Shumway (2001),

who argued that “If a firm has more variable cash flows (and hence more variable stock

return), then the firm ought to have a higher probability of bankruptcy.” Our finding is

consistent with Shumway’s (2001) argument. The forward default intensities are strongly

increasing in this idiosyncratic risk measure for almost all the horizons being considered.

Our estimates of the forward intensity function for exits due to reasons other than

default are presented in Table 5. All common factors and firm-specific attributes used in

the forward default intensity functions continue to be relevant. The results show that all

variables are significant even though they may not be so for all prediction horizons. We

skip the detailed discussions here to conserve space.

5.2 Aggregate number of defaults

At each month-end, we compute the predicted number of defaults among the active firms

in the sample for a prediction horizon. We then compare it with the observed number of
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defaults in the intended prediction period. Repeating this for the entire sample and for

different prediction horizons. Figure 2 plots the comparisons for the following horizons:

1 month, 3 months, 6 months, 12 months, 24 months and 36 months. The line depicts

the predicted values whereas the bars are the observed numbers of defaults. For shorter

horizons, our model fits the reality quite well. However, as the horizon increases, the line

deviates from the bars, implying a deteriorating performance in the long run. Generally

speaking, our model overstates the overall credit risk in the beginning of the sample

period and understates the overall credit risk towards the end of the sample period.

There are many possibilities for the model’s deteriorating performance for longer

prediction horizons. One natural speculation is that our model has missed out some

variables that are capable of reflecting long-term credit risk. A potential quick fix is

to introduce the frailty effect as suggested in the previous literature such as Koopman,

et al (2008) and Duffie, et al (2009) or to employ the regime-switching approach as

in Chuang and Kuan (2010). Koopman, et al (2009a&b) studied the relation between

macroeconomic fundamentals and cycles in defaults and rating activities. They found that

portfolio credit risk models which are solely based on observable common risk factors omit

one of the strongest determinants of credit risk. By accounting for the latent frailty factor

or hidden regimes, one may be able to improve our forward intensity model. Another

possibility is to experiment with different functional forms in relating the forward intensity

to the covariates.

5.3 Prediction accuracy

In this section, we employ the cumulative accuracy profile and its associated accuracy

ratio to evaluate our model’s prediction accuracy. The cumulative accuracy profile, also

known as power curve, examines a model’s performance based on risk rankings. A de-

tailed description can be found in Crosbie and Bohn (2002) and Vassalou and Xing (2004).

To check our model’s in-sample performance, we estimate the cumulative default proba-

bilities for each firm-month observation employing the parameter estimates reported in

Tables 4-5 where all the firm-month observations are included in the estimation. Figure

3A plots the cumulative accuracy profiles for the prediction horizons: 1 month, 3 months,

6 months, 12 months, 24 months and 36 months. Table 6 (Panel A) reports the accuracy

ratios. The predictions for short horizons are very accurate with the accuracy ratios

for 1 month and 3 months prediction exceeding 90%. The accuracy ratios for 6 months

and 12 months are also very good with their values staying above 80%. As the horizon

increases to 24 months and 36 months, the accuracy ratios reduce to 72.74% and 65.80%,

respectively.

We also implement out-of-sample analysis to ascertain the model’s performance. First,
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we randomly and equally divide all companies into two groups: the estimation group and

the evaluation group. Then we estimate the parameters using the estimation group

and apply the estimated coefficients to the evaluation group to generate the cumulative

accuracy profiles and to compute the associated accuracy ratios for different prediction

horizons. Figure 3B plots the cumulative accuracy profiles for this out-of-sample analysis,

and Table 6 (Panel B) reports the accuracy ratios. The results show that the model is very

stable in the sense that the accuracy ratios in the cross-sectional out-of-sample analysis

are very close to those obtained from the in-sample analysis.

An out-of-sample analysis in the time dimension is also conducted. We use a moving-

window approach. At each month-end starting from January 2001, we re-estimate the

model using all the data available up to that time and compute predicted default probabil-

ities for different prediction horizons. This analysis is more indicative of the performance

of the model in line with the situation in real applications. Figure 3C plots this out-of-

sample performance result based on the cumulative accuracy profile. Their out-of-sample

accuracy ratios are reported in Table 6 (Panel C). Again, the accuracy ratios are very

close to the in-sample results.

5.4 A case study of Lehman Brothers

We use Lehman Brothers as an illustrative example to see whether the term structure

of predicted default probabilities is informative. Our analysis is conducted in the out-

of-sample sense employing only data that were available at the time of computing the

term structure. Lehman Brothers filed for the Chapter 11 bankruptcy on September

15th, 2008. We plot in Figure 4 the estimated term structure of forward and cumulative

default probabilities at several time points prior to its bankruptcy filing. On the same

graph, we also plot the forward and cumulative default probabilities for Merrill Lynch,

Bank of America as well as the average values of the financial sector. Our results reveal

that the term structure is very informative, particularly in light of other financial firms

over the same time period.

The first set of two plots shows the estimated term structure of forward default prob-

abilities and that of cumulative default probabilities in September 2005, which was 36

months before Lehman Brothers’ bankruptcy filing. The term structure for the forward

default probabilities was upward sloping, making the cumulative rising faster when the

prediction horizon increases. The predicted cumulative default probabilities were quite

low in value, however, with the 1-year cumulative default probability being 0.2% and

3-years cumulative default probability being around 1.5%. This result suggests that the

market did not foresee any noticeable problem with Lehman Brothers three years prior

to its bankruptcy filing. Lehman Brothers had its distance-to-default at 2.7 and was
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trending up by comparing with its preceding 12-month average of 1.5. The company

also had enough liquid assets with CASH/TA ratio higher than 25%. Its profitability

was, however, less than 1%, which possibly led to the upward sloping forward default

probability term structure. The same pattern applied to other financial firms as well.

The second set of plots is the term structures in September 2006, which was 24

months before its bankruptcy. The term structure of forward default probabilities was

hump-shaped and peaked at around 24 months. The 1-year cumulative default probability

rose to 0.4% while the 3-years cumulative default probability rose to 2.7%. The stock

market was bullish then with the S&P500 index increasing by over 8% in the previous

year. Lehman Brothers remained highly liquid then. Its distance-to-default reduced to

1.2, and net income remained less than 1% of its book asset value.

The third set of plots presents Lehman Brothers’ term structures of forward and cumu-

lative default probabilities in September 2007, which was 12 months before its bankruptcy

filing. The forward curve remained hump-shaped with the peak moving to 16 months.

The 1-year cumulative default probability further rose to 1.6% and the 3-year cumulative

default probability rose significantly to 6.1%. The S&P500 index increased by over 14%

in the previous year. But Lehman Brothers’ distance-to-default dropped to 0.1 and its

stock had lost by more than 10% over the previous twelve months.

The last set of plots is the term structures for Lehman Brothers in June 2008, just

3 months before its bankruptcy filing. The company’s short-term credit risk reached its

historical high. The peak of the forward default probability curve moved to 3 months. The

1-year cumulative default probability increased sharply to 9.9% which is about 50 times

of the value 3 years earlier. The 3-year cumulative default probability climbed to 16.4%.

The stock market turned bearish with the S&P500 index dropping by almost 15% in the

previous year. Lehman Brothers’ distance-to-default further decreased to -1.7. And the

company’s stock price also reached the lowest level in 5 years then. Interestingly, other

US financial firms did not follow Lehman Brothers’ pattern. This case analysis seems

to suggest that our forward intensity model is highly informative about the dynamic

evolution of Lehman Brothers’ default prospect.

6 Conclusion

We have developed a reduced-form model for predicting corporate defaults/bankruptcies

over different prediction horizons. Our approach relies on constructing forward intensities.

The forward intensity model is implemented on a large sample of the US public firms

listed on three major stock exchanges. We use two common factors and six firm-specific

17



attributes to characterize the two forward intensity functions: default and other forms

of exit. We found that some firm-specific attributes influence the forward intensity both

in terms of level and trend. The forward intensity model is shown to perform very well

for shorter prediction horizons. For longer prediction horizons (two to three years), the

model’s performance deteriorates somewhat, but still seems to track the general default

pattern over time. We believe that improvement in performance should be possible with

further research.

We have demonstrated that the forward intensity approach can be operationally im-

plemented for default prediction for different horizons. Needless to say, it can be used

for credit risk analysis of individual firms such as credit ratings. The forward intensity

model also lends itself naturally to portfolio aggregation. By applying the aggregation

algorithm of Duan (2010) for the standard intensity model, one can generate the default

distribution (in terms of the number of defaults or the size of exposure) for any credit

portfolio. In short, it is also a practical bottom-up approach to credit portfolio analysis.
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7 Appendix

A Large sample properties of the estimator

We characterize the large sample properties of the estimator based on maximizing the

pseudo-likelihood function in (13). The parameter set is denoted by θ and its true value

is θ0. log LN(y, θ) is the pseudo-log-likelihood function when there are N companies and

y denotes the companies’ status indicators. To prove the consistency of the maximum

pseudo-likelihood estimator, We make the following assumptions:

Assumption 1. The parameter space Θ is an open bounded subset of the Euclidean

K-space.

Assumption 2. The covariate vectors {xit} are uniformly bounded and the nonsingular-

ity condition holds such that

lim
N→∞

N−1

N∑
i=1

T/∆t−1∑
j=0

(
exp(−fi,j∆t(∆t)∆t)

1− exp(−fi,j∆t(∆t)∆t)
+

exp(−hi,j∆t(∆t)∆t)
1− exp(−hi,j∆t(∆t)∆t)

)
xitx

′
it

is a finite nonsingular matrix.

The form of nonsingularity assumption is due to our forward intensity specification.

It should be noted that although only the total number of firms N is required to be

large for the consistency result, the total number of periods T/∆t need to be larger than

the dimension of the common attributes in order to allow the nonsingularity condition to

hold. We first state the lemmas used in the proof below. These lemmas are corresponding

to Theorem 4.1.2 and 4.2.2 in Amemiya (1986).

Lemma 1. Under the conditions:

(A) The parameter space Θ is an open subset of the Euclidean K-space.

(B) log LN(y, θ) is a measurable function of y for all θ ∈ Θ, and ∂ log LN/∂θ exists and

is continuous in an open neighborhood N1(θ0) of θ0.

(C) There exists an open neighborhood N2(θ0) of θ0 such that N−1 log LN(θ) converges

to a nonstochastic function l(θ) in probability uniformly in θ in N2(θ0), and l(θ) attains

a strict local maximum at θ0.

Let ΘN be the set of roots of the equation

∂ log LN

∂θ
= 0

corresponding to the local maxima. Then for any ε > 0,

lim
N→∞

P [ inf
θ∈ΘN

(θ − θ0)′(θ − θ0) > ε] = 0
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Lemma 2. Let gi(y, θ) be a measurable function of y in Euclidean space for each i and for

each θ ∈ Θ, a compact subset of Euclidean K-space, and a continuous function of θ for

each y uniformly in i. Assume Egi(y, θ) = 0. Let {yi} be a sequence of independent and

not necessarily identically distributed random vectors such that E supθ∈Θ |gi(yi, θ)|1+δ ≤
M <∞ for some δ > 0. Then N−1

∑N
i=1 gi(yi, θ) converges to 0 in probability uniformly

in θ ∈ Θ.

To prove the consistency, we verify the conditions of Lemma 1. Conditions (A) and

(B) are obviously satisfied. To verify (C), we make use of Lemma 2 and define gi(y, θ) =∑T/∆t−1
j=0 logPτ,i,j(θ)−Eθ0

∑T/∆t−1
j=0 logPτ,i,j(θ). gi(y, θ) in a compact neighborhood of θ0

satisfies all the conditions in Lemma 2 because of the assumptions. Therefore,

N−1

N∑
i=1

T/∆t−1∑
j=0

logPτ,i,j(θ)→ l(θ) = lim
N→∞

N−1

N∑
i=1

Eθ0

T/∆t−1∑
j=0

logPτ,i,j(θ)

uniformly in θ as N →∞. By making use of Assumption 2 as well as the exact function

form of the pseudo-log-likelihood function, we can also prove that l(θ) attains a strict

local maximum at θ = θ0. Thus we complete the proof of consistency.

To show the asymptotic normality of the estimator, denote the maximum pseudo-

likelihood estimates as θ̂ and use the Taylor expansion to obtain

∂ log LN(θ̂)

∂θ
=
∂ log LN(θ0)

∂θ
+
∂2 log LN(θ̃)

∂θ∂θ′
(θ̂ − θ0), where θ̃ lies between θ0 and θ̂

⇒ θ̂ − θ0 =−

(
1

N

∂2 log LN(θ̃)

∂θ∂θ′

)−1(
1

N

∂ log LN(θ0)

∂θ

)
Consider

1

N

∂2 log LN(θ̃)

∂θ∂θ′
=

1

N

N∑
i=1

T/∆t−1∑
j=0

∂2 logPτ,i,j(θ̃)

∂θ∂θ′
→p H(θ̃) as N →∞,

where H(θ) = limN→∞
1
N

∑N
i=1 Eθ0

∑T/∆t−1
j=0

∂2 logPτ,i,j(θ)

∂θ∂θ′
. Since θ̂ converges to θ0 and θ̃

lies between θ̂ and θ0, H(θ̃) converges to H(θ0). So

1

N

∂2 log LN(θ̃)

∂θ∂θ′
=

1

N

N∑
i=1

T/∆t−1∑
j=0

∂2 logPτ,i,j(θ̃)

∂θ∂θ′
→p H(θ0) as N →∞.

Therefore,
√
N(θ̂ − θ0)

= −

(
1

N

∂2 log LN(θ̃)

∂θ∂θ′

)−1(
1√
N

∂ log LN(θ0)

∂θ

)

= −

(
1

N

∂2 log LN(θ̃)

∂θ∂θ′

)−1
1√
N

N∑
i=1

T/∆t−1∑
j=0

∂ logPτ,i,j(θ0)

∂θ


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where

{
T/∆t−1∑
j=0

∂ logPτ,i,j(θ0)

∂θ
, i = 1, 2, · · · , N

}
are independent. Then, according to Linde-

berg’s central limit theorem,
√
N(θ̂− θ0) is asymptotically normally distributed with the

mean vector equal to 0 and the variance-covariance matrix being

H(θ0)−1 lim
N→∞

1

N

N∑
i=1

E

T/∆t−1∑
j=0

∂ logPτ,i,j(θ0)

∂θ

T/∆t−1∑
j=0

∂ logPτ,i,j(θ0)

∂θ

′H(θ0)−1.

The asymptotic variance can thus be approximated by

Var(θ̂ − θ0)

=

(
∂2 log Lτ (θ̂)

∂θ∂θ′

)−1 N∑
i=1

T/∆t−1∑
j=0

∂ logPτ,i,j(θ0)

∂θ

T/∆t−1∑
j=0

∂ logPτ,i,j(θ0)

∂θ

′
×

(
∂2 log Lτ (θ̂)

∂θ∂θ′

)−1

.

B Estimating distance-to-default (DTD)

This appendix briefly reviews the Merton (1974) model and explains the numerical scheme

employed to calculate distance-to-default. Merton’s model assumes that firms are fi-

nanced by equity and one single pure discount bond with maturity date T and principal

L. The asset value Vt follows geometric Brownian motion:

dVt = µVtdt+ σVtdBt.

Due to limited liability, the equity value at maturity is ET = max(VT −L, 0). Therefore,

the equity value at time t ≤ T by the Black-Scholes option pricing formula becomes

Et = VtN(dt)− e−r(T−t)LN(dt − σ
√
T − t) (18)

where r is the instantaneous risk-free rate, N(·) is the cumulative distribution function

for standard normal random variable, and

dt =
ln(Vt/L) + (r + σ2/2)(T − t)

σ
√
T − t

. (19)

According to Merton’s model, the company’s bankruptcy probability at time t isN(−DTDt)

where DTDt denotes distance-to-default and it is

DTDt =
ln(Vt/L) + (µ− σ2/2)(T − t)

σ
√
T − t

.

21



To implement Merton’s model, the so-called KMV assumption is typically adopted

which sets T − t to one year and L to the firm’s book measure of short-term debt plus one

half of its long-term debt. The KMV implementation assumption becomes problematic

for financial firms. Financial firms typically have large amount of liabilities that are

neither classified as short-term nor long-term debt, and thus the KMV assumption will

grossly understate the amount of debt.

In order to deal with for financial firms, we follow Duan (2010) to include a firm’s

other liabilities which is adjusted by a fraction. Denote this unknown fraction by δ and

note the resulting debt level used in estimation is a function of δ, i.e., L(δ). This unknown

fraction can be estimated along with µ and σ. The KMV assumption can therefore be

viewed a special case by setting δ = 0. Our estimation method does not preclude the

estimated fraction to become zero.

Following Duffie, Saita, and Wang (2007), we measure the short-term debt as the

maximum of “Debt in current liabilities” and “Total current liabilities”. A firm’s other

liabilities are defined as total liabilities minus short-term debt and then minus long-term

debt. Hence, the liability measure L(δ) equals short-term debt plus one half of the long-

term debt and plus a fraction of the other liabilities.

We then apply the maximum likelihood estimation method developed in Duan (1994,

2000) to estimate this unknown fraction parameter together with the asset return’s mean

and standard deviation. Since a firm’s asset value could significantly change with a

major investment and financing action, it makes more sense to standardize the firm’s

market value of assets by its book value so that the pure scaling effect will not distort the

parameter values in the time series estimation. We thus divide the model’s implied asset

value by its book asset value in constructing the log-likelihood function. Obviously, if the

book asset value stays unchanged throughout the sample period, such standardization

will not have any effect. The log-likelihood function is

L (µ, σ, δ) = −n− 1

2
ln(2π)− 1

2

n∑
t=2

ln(σ2ht)−
n∑
t=2

ln

(
V̂t(σ, δ)

At

)
−

n∑
t=2

ln(N(d̂t(σ, δ)))

−
n∑
t=2

1

2σ2ht

[
ln

(
V̂t(σ, δ)

V̂t−1(σ, δ)
× At−1

At

)
−
(
µ− σ2

2

)
ht

]2

where n is the total number of equity values in the time series sample, V̂t is the model’s

implied asset value solved using equation (18), d̂t is computed using equation (19) with

V̂t, At is the book asset value, and ht is the length of time between two consecutive equity

values (measured in trading days as a fraction of a year). Introducing ht is mainly to take

care of missing equity values in the sample. Note that δ becomes part of the log-likelihood

function through L(δ).
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To avoid the “look-ahead bias”, we employ a rolling window method to estimate DTD.

More specifically, at the end of each month, we estimate DTD for each firm using its daily

market values of equity capitalization in the preceding year. We set the DTD to a missing

value if there are less than 50 valid equity values in the preceding year. Whenever there

are three or more consecutive equity values being identical, we will only consider the first

and the last equity values in the sequence to be valid. The last valid DTD is used as the

final DTD of each estimation.

23



References

[1] Altman, Edward I., 1968, Financial ratios, discriminant analysis and the prediction

of corporate bankruptcy, Journal of Finance 23, 589-609.

[2] Amemiya, Takeshi, 1986, Advanced Econometrics, Basil Blackwell Ltd, UK.

[3] Azizpour, S., and K. Giesecke, 2008, Self-exciting corporate defaults: contagion vs.

frailty, Stanford University working Paper.

[4] Beaver, William H., 1966, Financial ratios as predictors of failure, Journal of Ac-

counting Research 4, 71-111.

[5] Beaver, William H., 1968, Market prices, financial ratios, and the prediction of failure,

Journal of Accounting Research 6, 179-192.

[6] Beaver, W. H., M. F. McNichols, and J. W. Rhie, 2005, Have financial statements

become less informative? Evidence from the ability of financial ratios to predict

bankruptcy, Review of Accounting Studies 10, 93-122.

[7] Bharath, S. T., and T. Shumway, 2008, Forecasting default with the Merton distance

to default model, Review of Financial Studies 21, 1339-1369.

[8] Campbell, J. Y., J. Hilscher, and J. Szilagyi, 2008, In search of distress risk, Journal

of Finance 63, 2899-2939.

[9] Chava, Sudheer, and Robert A. Jarrow, 2004, Bankruptcy prediction with industry

effects, Review of Finance 8, 537-569.

[10] Chen, C. J., 2007, The instantaneous and forward default intensity of structural

models, University of Alberta working paper.

[11] Chuang, H.C., and C.M. Kuan, 2010, Predicting defaults with regime switching

intensity: model and empirical evidence, National Taiwan University working Paper.

[12] Crosbie, P., and J. Bohn, 2002, Modeling default risk, technical report, KMV LLC.

[13] Das, S. R., D. Duffie, N. Kapadia, and L. Saita, 2007, Common failings: How

corporate defaults are correlated, Journal of Finance 62, 93-117.

[14] Duan, J. C., 1994, Maximum likelihood estimation using price data of the derivative

contract, Mathematical Finance 4, 155-167.

[15] Duan, J. C., 2000, Correction: ”Maximum likelihood estimation using price data of

the derivative contract”, Mathematical Finance 10, 461-462.

24



[16] Duan, J. C., 2010, Clustered defaults, National University of Singapore working

paper.

[17] Duffie, D., and D. Lando, 2001, Term structures of credit spreads with incomplete

accounting information, Econometrica 69, 633-664.

[18] Duffie, D., A. Eckner, G. Horel, and L. Saita, 2009, Frailty correlated default, Journal

of Finance 64, 2089-2123.

[19] Duffie, D., L. Saita, and K. Wang, 2007, Multi-period corporate default prediction

with stochastic covariates, Journal of Financial Economics 83, 635-665.

[20] Hillegeist, S. A., E. K. Keating, D. P. Cram, and K. G. Lundstedt, 2004, Assessing

the probability of bankruptcy, Review of Accounting Studies 9, 5-34.

[21] Koopman, S. J., A. Lucas, and A. Monteiro, 2008, The multi-state latent factor

intensity model for credit rating transitions, Journal of Econometrics 142, 399-424.

[22] Koopman, S. J., R. Kraussl, A. Lucas, and A. B. Monteiro, 2009, Credit cycles and

macro fundamentals, Journal of Empirical Finance 16, 42-54.

[23] Koopman, S.J., A. Lucas, and B. Shwaab, 2009, Macro, industry and frailty effects

in defaults: The 2008 credit crisis in perspective, VU University Amsterdam working

paper.

[24] Lando, D., and M. S. Nielsen, 2009, Correlation in corporate defaults: contagion or

conditional independence, Copenhagen Business School working paper.

[25] Merton, Robert C., 1974, On the pricing of corporate debt: The risk structure of

interest rates, Journal of Finance 29, 449-470.

[26] Ohlson, J. A., 1980, Financial ratios and the probabilistic prediction of bankruptcy,

Journal of Accounting Research 18, 109-131.

[27] Rhodes-Kropf, M., D.T. Robinson, and S. Viswanathan, 2005, Valuation waves and

merger activity: the empirical evidence, Journal of Financial Economics 77, 561-603.

[28] Shumway, T., 2001, Forecasting bankruptcy more accurately: a simple hazard model,

Journal of Business 74, 101-124.

[29] Vassalou, M., and Y. H. Xing, 2004, Default risk in equity returns, Journal of Finance

59, 831-868.

[30] Zmijewski, Mark E., 1984, Methodological issues related to the estimation of financial

distress prediction models, Journal of Accounting Research 22, 59-82.

25



Figure 1. Parameter estimates for the forward default intensity function

This figure shows the parameter estimates for the forward default intensity function

corresponding to different prediction horizons. S&P500 is the trailing 1-year S&P500

index return, Treasury rate is the 3-month US Treasury rate, DTD is the distance to

default, CASH/TA is the sum of cash and short-term investments over the total assets,

NI/TA is the net income over the total assets, SIZE is log of firm’s market equity over the

average market equity value of the S&P500 company, M/B is the market to book equity

value ratio, SIGMA is the 1-year idiosyncratic volatility. The subscript AVG denotes the

average in the preceding 12 months, DIF denotes the difference between its current value

and the preceding 12-month average. The solid line is for the parameter estimates and

the dotted lines depict the 90% confidence interval.
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Figure 1. Parameter estimates for the forward default intensity function

(Cont’d)
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Figure 2. Aggregate number of defaults

This figure shows the observed (bars) and predicted (line) aggregate number of defaults

for different prediction horizons. At each month-end, we compute the expected number of

defaults in 1 month, 3 months, 6 months, 12 months, 24 months, 36 months and compare

them with the observed values in the intended periods.
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Figure 3A. In-sample cumulative accuracy profiles

This figure shows the in-sample cumulative accuracy profiles (power curves) based on all

firms and the entire sample period (1991 to 2009) for different prediction horizons.
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Figure 3B. Out-of-sample (cross-section) cumulative accuracy profiles

This figure shows the out-of-sample cumulative accuracy profiles (power curves) over

the entire sample period (1991-2009) for different prediction horizons. We divide the

firms equally into two groups: estimation group and evaluation group. We estimate the

parameters based on the estimation group and then evaluate the prediction accuracy

using the evaluation group.
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Figure 3C. Out-of-sample (over time) cumulative accuracy profiles

This figure shows the out-of-sample cumulative accuracy profiles (power curves) for the

sample period (2001-2009) for different prediction horizons. We re-estimate the model at

each month-end starting from the first month of 2001 and using only the data available

at the of estimation.
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Figure 4. Lehman Brothers’ term structure of forward and cumulative

default probabilities

This figure shows the estimated term structure of forward default probabilities and that

of cumulative default probabilities for Lehman Brothers, Merrill Lynch, Bank of America

as well as the average values of the financial sector at 36 months, 24 months, 12 months

and 3 months before Lehman Brothers’ bankruptcy filing date (September 15, 2008).
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Table 1. Number of defaults and other exits

Total number of active firms, defaults/bankruptcies and other exits for each year over

the sample period 1991-2009. The number of active firms is computed by averaging over

the number of active firms across all months of the year.

Year Active Firms Defaults (%) Other Exit (%)

1991 4031 26 0.65% 259 6.43%

1992 4029 24 0.60% 334 8.29%

1993 4203 14 0.33% 217 5.16%

1994 4442 10 0.23% 282 6.35%

1995 5079 9 0.18% 406 7.99%

1996 5473 12 0.22% 477 8.72%

1997 5659 43 0.76% 557 9.84%

1998 5725 65 1.14% 749 13.08%

1999 5444 76 1.40% 742 13.63%

2000 5109 96 1.88% 623 12.19%

2001 4936 158 3.20% 584 11.83%

2002 4700 85 1.81% 399 8.49%

2003 4363 65 1.49% 369 8.46%

2004 4101 25 0.61% 306 7.46%

2005 3947 24 0.61% 293 7.42%

2006 3877 18 0.46% 285 7.35%

2007 3786 21 0.55% 358 9.46%

2008 3694 60 1.62% 290 7.85%

2009 3598 73 2.03% 245 6.81%
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Table 2. Summary statistics of firm-specific attributes

Summary statistics for the firm-specific attributes. DTD is the distance-to-default,

CASH/TA is cash and short-term investments over the total assets, NI/TA is the net

income over the total assets, SIZE is log of firm’s market equity value over the average

market equity value of an S&P500 company, M/B is the market to book ratio, SIGMA is

the 1-year idiosyncratic volatility. The subscript AVG denotes the average in the previous

12 months, DIF denotes the difference between current value and its previous 12-month

average.

Mean Std. Min 25% Pctl Median 75% Pctl Max

DTDAVG 3.610 2.754 -1.555 1.629 3.152 5.076 14.361

DTDDIF -0.009 1.746 -8.417 -0.983 0.000 0.980 9.046

CASH/TAAVG 0.169 0.212 0.000 0.025 0.072 0.233 0.979

CASH/TADIF -0.005 0.067 -0.455 -0.020 -0.002 0.013 0.434

NI/TAAVG -0.011 0.069 -0.793 -0.008 0.005 0.017 0.127

NI/TADIF -0.002 0.071 -0.941 -0.007 0.000 0.007 0.611

SIZEAVG -4.372 2.042 -9.209 -5.865 -4.525 -3.046 2.277

SIZEDIF -0.038 0.378 -2.144 -0.204 -0.023 0.150 1.708

M/B 2.000 2.303 0.305 1.030 1.302 2.072 32.813

SIGMA 0.141 0.099 0.027 0.073 0.114 0.177 0.571
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Table 6. Accuracy ratios

This table reports the accuracy ratios derived from the cumulative accuracy profiles

based on rank orders. Panel A reports the in-sample results for all firms and the entire

sample period (1991-2009). Panel B presents the out-of-sample (cross-section) results

for the entire sample period (1991-2009) where we equally divide the firms into two

groups: estimation group and evaluation group. We estimate the parameters based on

the estimation group and then evaluate the prediction accuracy using the evaluation

group. Panel C reports the out-of-sample (over time) results for the sample period (2001-

2009). We re-estimate the model at each month-end starting from the first month of 2001

and using only the data available at the of estimation.

Panel A: In-sample result

1 month 3 months 6 months 12 months 24 months 36 months

93.26% 91.34% 88.39% 82.92% 72.74% 65.80%

Panel B: Out-of-sample (cross-section) result

1 month 3 months 6 months 12 months 24 months 36 months

93.89% 91.80% 88.62% 82.61% 72.14% 65.55%

Panel C: Out-of-sample (over time) result

1 month 3 months 6 months 12 months 24 months 36 months

91.70% 90.04% 87.41% 83.77% 75.16% 69.78%
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