Analytical Form of Gradient and Hessian

This document illustrates the analytical form of gradient and hessian for the forward intensity model.
For brevity, we only deal with the case of default. Gradient and hessian for the intensity function corre-

sponding to other exit can be derived similarly.

For notational convenience, we introduce the following notations:
B denotes the parameter vector (column vector)

We classify all the firm-month observations into three categories:
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X© contains all the surviving firm-month observations, X' contains all the default observations and
X? has all the observations for other exit. There are altogether Ny, N; and N, observations for each
category. Variables for each firm-month observation forms a row vector z] and we assume the first vari-

able is always a constant 1 corresponding to the intercept term in the intensity function.
The case without bailout term

The pseudo log-likelihood function is expressed as follows:
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Let fij = exp(:zz B)At, then we can express gradient and hessian as follows:
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where (27)7 denotes the transpose of
The case with bailout term

In this case, we assume the bailout effect starts to take place after tpaious and tf denotes the time
of the observation x?. We also assume the first two parameters 3(1) and B(2) are the bailout param-

eters. With slight difference from the paper, we assume the intensity function to have the following form:
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To employ —3(1)? and £(2)2, we can guarantee the two bailout parameters to be negative and positive
respectively so that they are consistent with their definition in the paper. To make the presentation

easier, we further introduce the following notations:
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In this case, gradient(3:end) and hessian(3:end,3:end) can be derived similarly as in the case without
bailout term:
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We now derive other elements in the gradient and hessian:
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