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Abstract
Sequential Monte Carlo (SMC) is a powerful technique originally developed for particle filter-
ing and Bayesian inference. As a generic optimizer for statistical and non-statistical objectives,
its role is far less known. Density-tempered SMC is a highly efficient sampling technique ide-
ally suited for challenging global optimization problems and is implementable with a somewhat
arbitrary initialization sampler instead of relying on a prior distribution. SMC optimization is
anchored at the fact that all optimization tasks (continuous, discontinuous, combinatorial, or
noisy objective function) can be turned into sampling under a density or probability function
short of a norming constant. The point with the highest functional value is the SMC estimate
for the maximum. Through examples, we systematically present various density-tempered SMC
algorithms and their superior performance vs. other techniques like MCMC. Data cloning and
k-fold duplication are two easily implementable accuracy accelerators, and their complementar-
ity is discussed. The Extreme Value Theorem on the maximum order statistic can also help
assess the quality of the SMC optimum. Our coverage includes the algorithmic essence of the
density-tempered SMC with various enhancements and solutions for (1) a bi-modal non-statistic
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function without and with constraints, (2) a multidimensional step function, (3) offline and online
optimization, (4) combinatorial variable selection, and (5) non-invertibility of the Hessian.

1 Introduction
Sequential Monte Carlo (SMC) is, as the name suggests, a family of Monte Carlo sampling tech-
niques that sequentially adapt to the target density/probability function by moving/concentrating
the simulated sample to the most desirable part of its support. SMC has its origin in the seminar
work of Gordon et al. (1993) in designing a particle filter and has found its place in Bayesian
inference as in Chopin (2002). Conceptually, it is fairly easy to understand its applications in the
Bayesian statistics because moving from the prior to posterior distribution by SMC fits naturally
to the context. However, using SMC for optimization is far less known and will need explana-
tions. Before elaborating, we will make a perhaps provocative statement that all optimization
tasks (continuous, discontinuous, combinatorial, or noisy objective function) can be turned into
sampling problems where SMC can be applied.

An optimization objective can always be converted to a positive function with, say, exponen-
tiation, without changing the optimizing point. Minimization can also be easily changed to
maximization by applying a negative sign to the exponent. Therefore, the transformed objec-
tive function becomes a pseudo density/probability because it is a density, probability or mixed
function just short of the norming constant. Sampling without needing to know this unknown
norming constant holds the key, and for which importance sampling is such a technique. Suppose
that a good-quality sample is generated under this pseudo density/probability function, the point
with the highest functional value becomes the Monte Carlo solution for the maximum. Beyond
this rather generic concept, the implementation challenge is to conduct importance sampling
effectively and efficiently. Density-tempered sequential Monte Carlo serves this role perfectly.
We will provide a systematic exposition on the theoretical concept and practical implementations
in this article.

We limit the scope of this review to optimization with density-tempered SMC and contrast it,
whenever possible, with another SMC method and the Markov Chain Monte Carlo (MCMC)
approach, its close relative. A related focal issue is statistical inference of these two sampling
techniques, reflective of their methodological origin. Optimization is an extremely large subject
and has a long history. It is simply impossible to present a comprehensive review on optimization
in an article of this length. Gradient-based methods historically dominate the field and their
power and limitations are well understood. There are also many meta-heuristic optimization
methods that have emerged over the years, including simulation-based methods such as simulated
annealing and genetic algorithms. We refer readers to a book by Spall (2003) for a comprehensive
coverage on many of those conventional optimization methods.

SMC algorithms should not be misunderstood as meta-heuristic because the inherent property of
Monte Carlo sampling ensures convergence of the maximum order statistic to the right theoretical
quantity as the sample size gets large. Typical Monte Carlo methods are used to estimate some
functional, e.g, computing the mean of some functional transformation of one or many random
variables, and through the Central Limit Theorem the quality of the estimate can be assessed.
In the context of optimization discussed in this paper, Duan (2019) has shown that the Fisher-
Tippett-Gnedenko Extreme Value Theorem can be used to provide the quality assurance of the
SMC maximum.

2



Although particle filtering also uses SMC, that large literature is not the focus of this article. In
places of discussing SMC2 (Chopin et al., 2013, Fulop and Li, 2013, Duan and Fulop, 2015, Duan
et al., 2020, Jasra et al., 2021), the outer-layer SMC is used to find the parameter optimum
whereas the inner-layer SMC, i.e., a particle filter, is used to compute the fixed-parameter
likelihood function for, say, a state-space model. In short, our focus remains at the out-layer
SMC specifically for optimization.

The core of this article is organized into five methodological sections to cover the theoretical
foundation and implementation ins-and-outs of density-tempered SMC. Our discussions will be
accompanied by examples on (1) a bi-modal non-statistic function without and with constraints,
(2) a multidimensional step function, (3) offline and online optimization, (4) combinatorial
variable selection, and (5) non-invertibility of the Hessian.

2 Optimization by SMC sampling
SMC sampling technique was originally proposed to solve fixed-parameter filtering problems
which relies on Bayes’ theorem to sequentially update the system. Later, it was adopted for
Bayesian inference where a set of simulated particles are used to represent a posterior distribution
of parameters, π(θ|D) ∝ L(θ;D)π0(θ) with L(θ;D) being the likelihood function of data
D and π0(θ) being the prior. The typical Bayesian analysis uses the posterior mean, but
argmax

θ
π(θ|D) yields a point estimate that solves the optimization problem defined under the

Bayesian framework. Note that if an improper (uniform) prior is chosen, the posterior coincides
with the target when taking a frequentist point of view, i.e., argmax

θ
L(θ;D).

In a more general and non-statistical setting, the objective function h(x) need not be a probability
related function. Neither is data involved in defining the function. Moreover, the functional value
of the argument, x, over its domain may not be positive. But a simple monotonic transformation
f(x) ∝ exp[h(x)] can turn the objective into a positive function so that f(x) can be viewed
as a density or probability function, depending on whether it is differentiable, up to an unknown
norming constant. If there is a sampling technique that does not require knowing this unknown
norming constant, then Monte Carlo simulation offers a way of solving this optimization problem.
SMC is indeed such a sampling technique.

The SMC solution to the maximization problem is the point that gives rise to the largest func-
tional value in the sample, which corresponds to the maximum order statistic of the sample of
functional values. Convergence to the right value by the maximum order statistic is guaranteed
per the usual argument, which in turn implies the convergence of the SMC solution to the global
maximizer if it is uniquely identified.

Most optimization problems in real-world applications do not have analytical solutions, and
sampling-based methods come in handy for such scenarios. Sampling methods have several
advantages over traditional optimization methods. This group of algorithms is generic and
in principle applicable to all optimization problems. Monte Carlo simulation is also a good
technique for high-dimensional problems because the convergence rate is typically invariant to
the dimension. It is also derivative-free and serves as a generic technique for finding the global
optimum.

In this section, we first briefly introduce the theoretical concept and the history of using SMC
for optimization. Then we introduce two important algorithms - density-tempered SMC and
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expanding-data SMC and explain their complementarity for offline and online optimizations.
Moreover, we demonstrate the generality of density-tempered SMC sampling technique by dis-
cussing its applications to constrained, discrete, combinatorial and state-space model optimiza-
tions. In a different section, we will compare it with the Markov Chain Monte Carlo (MCMC)
method.

2.1 Optimization via sampling
Two most important families of Monte Carlo based algorithms are Markov Chain Monte Carlo
(MCMC) and importance sampling. SMC originates from the family of importance sampling
and was due to Gordon et al. (1993), where the authors developed it for fixed-parameter particle
filtering. Chopin (2002) was the first to introduce SMC into Bayesian parameter estimation.

For statistical analysis, both MCMC and SMC algorithms were originally developed for Bayesian
inference. To our knowledge, Lele et al. (2007) was the first to bring MCMC into a frequentist
inference setting. Specifically, the authors proposed to calculate the maximum likelihood estimate
(MLE) and conduct its associated statistical inference for complex ecological hierarchical models
through the use of the MCMC algorithm. Through data cloning to be elaborated later, the prior
distribution π0(θ) regardless of its specification will eventually be dampened to the point where
the Bayesian posterior mean becomes the MLE.

There are more recent works that directly utilize SMC as an optimizer for either ML estimation
or others, and demonstrate its applicability and superiority. Duan (2019), Duan et al. (2020) and
Duan and Li (2021) are examples of showing that prior distribution is completely unnecessary
and maximizing the target function can be achieved through using an initialization sampler
and importance weight. In this article, we focus on using SMC, particularly density-tempered
SMC, for general optimization problems regardless of whether optimization is for a statistical
analysis or not. In short, we will systematically demonstrate the wide applicability and power of
optimization using density-tempered SMC.

2.2 Density-tempered SMC for optimization

2.2.1 Importance sampling and resampling
Importance sampling is commonly used to estimate moments of a function of random variables
governed by a difficult-to-sample distribution. In the current context, we deploy it to estimate
instead the mode of f(θ|D), which as discussed earlier is a distribution short of a norming
constant. The method draws a random sample from a simple distribution g(θ) whose support
covers that of f(θ|D). The importance weights, i.e., wi = f(θi|D)/g(θi) for i = 1, 2, · · · , N ,
after self-normalization become probabilities for a weighted sample, {θi, wi/

∑
j wj}Ni=1. The

sample thus represents an empirical distribution of f(θ|D).

One key feature of importance sampling is that self-normalization removes the need to know
the norming constant. So, f(θ|D) is just as good as a properly specified density or probability
function. Therefore, a target function for optimization, f(θ|D), only needs to be non-negative
so that it is proportional to a density or probability function.

When there is a sequence of target distributions, {fδp(θ|D), p = 0, 1, 2, · · · }, with an increasing
δp and leading to f(θ|D), one can envision its corresponding weighted sample at stage p as

{θ(p)
i , w

(p)
i }Ni=1. The task is to design a sequential way to gradually move the system from

fδp(θ|D) to fδp+1
(θ|D) and eventually reach f(θ|D).
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2.2.2 Density-tempering
The idea of density-tempering came from Del Moral et al. (2006), and then followed by Duan
and Fulop (2013), Duan and Fulop (2015) among others. In a general setting, we consider an
initial particle cloud, {θi, i = 1, 2, · · · , N}, generated from some easy-to-sample density I(θ)
which need not be the prior distribution even for Bayesian analysis (see Duan et al., 2020).
Moving to the target distribution f(θ|D) in one step is way too ambitious when f(θ|D) is very
different from I(θ). Instead, an inhomogeneous sequence of intermediate target distributions,
{fδp(θ|D), p = 0, 1, 2, · · · }, has been devised to allow for controlled moves from I(θ) to f(θ|D).
It goes as follows:

fδp(θ|D) ∝ f(θ|D)δpI(θ)1−δp , (1)

where 0 = δ0 < δ1 < δ2 < · · · ≤ 1. This construction defines an appropriate bridge such that
f0(θ|D) = I(θ) and f1(θ|D) = f(θ|D). The sequence of δ0 < δ1 < δ2 · · · in [0,1] can be
self-adaptively taken from, say, a set of 1,000 equally spaced out points on a logarithmic scale
translated from [e−20, 1].

Denote {θ(p)
i , i = 1, · · · , N} as the particle cloud that approximates fδp(θ|D), the next δp+1

can be selected via a grid search such that the reweighted particles can maintain a pre-specified
effective sample size (ESS) (e.g., 50% of the sample size), which is defined as

ESS =

(∑N
i=1 wi

)2
∑N

i=1 w
2
i

(2)

The sequential samples must be reweighted to reflect incrementally added importance weights;
that is,

w
(p+1)
i = w

(p)
i

fδp+1(θ
(p)
i |D)

fδp(θ
(p)
i |D)

. (3)

However, sequential importance sampling will gradually concentrate the weights on a small subset
of particles, which is commonly known as the particle degeneracy problem.

To reduce serious weight imbalance across particles, Gordon et al. (1993) introduced multinomial
resampling to accompany the reweighting step. Resampling basically restores equal weights
to the sample and replaces any particle with a heavy weight by multiple copies of the same
particle. For example, a particle carrying a 20% probability will be replaced with the same
in 20% of the sample so that it is likely to remain its importance in the subsequent sample.
Other resampling approaches include residual resampling (Whitley, 1994, Liu and Chen, 1998),
stratified resampling (Kitagawa, 1996) and systematic resampling (Carpenter et al., 1999). The
principle governing the resampling step is that the new system should be a good approximation
to the original system. Douc et al. (2005) provided a comparison on several commonly used
resampling schemes.

However, resampling does not fundamentally resolve the particle degeneracy problem because the
number of distinct particles has been decreased in exchange for balanced weights. A rejuvenation
step to restore particle diversity is a must and will be discussed next.
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2.2.3 Support boosting
In the particle filtering literature, Gilks and Berzuini (2001) first proposed adding a move step
following the resampling step to rejuvenate the particle set (i.e., boosting the empirical support),
for which new particles are proposed via a Markov chain transition kernel conditional on the
resampled particles. Running through a properly designed Markov kernel boosts the sample
variety without changing the underlying target distribution because the input sample has been
drawn from the same stationary distribution. Chopin (2002) extended the algorithm to Bayesian
inference applications on static models for which one estimates model parameters through a
posterior distribution.

The Choice of the Markov kernel largely determines the efficiency of an algorithm. The Metropolis-
Hasting kernel (Metropolis et al., 1953 and Hastings, 1970) is most commonly used, which works
as in Algorithm 1.

Algorithm 1 The Metropolis–Hastings Algorithm

Given the system’s current particles θ and at the tempering value of δp,

Step 1. Propose θ∗ ∼ Q(·|θ), where Q is a proposal sampler’s distribution. It together
with fδp(θ|D) ∝ f(θ|D)δpI(θ)1−δp satisfies the reversibility condition: fδp(θ

∗|D)Q(θ|θ∗) =
fδp(θ|D)Q(θ∗|θ).

Step 2. Compute the acceptance rate α,

α = min

(
1,

fδp(θ
∗|D)Q(θ|θ∗)

fδp(θ|D)Q(θ∗|θ)

)
(4)

Step 3. With probability α, accept θ∗, otherwise keep the old particle.

Step 4. Repeat step 1-3 until some criteria are met (e.g., reaching a threshold level of cumulative
acceptance rate).

For the proposal sampler’s density Q, a usual choice is a Gaussian distribution centered at the
current location θi, i.e., a random walk, so that a small region near θi is visited next. A random
walk proposal can result in a high acceptance rate when small variance is chosen. It can easily
replace identical particles but the new particles are in fact of very similar values and the sample is
only artificially boosted. Chopin (2002) suggested an independent proposal sampler by adopting
a Gaussian distribution with or without cross correlations where the Gaussian parameters can

be estimated with the equally weighted current particles, i.e., {θ(p)
i , i = 1, · · · , N}. A mixture

of the independent and random walk proposal samplers is actually a good choice for many
applications to explore potential improvements both globally and locally. Particle replacement
can also be targeted at a random sub-vector of θ to increase the acceptance rate when the
dimension of θ is high.

The key steps for density-tempered SMC are summarized in Algorithm 2.

2.2.4 A non-statistical example
To illustrate the use of density-tempered SMC algorithm, we first consider the following non-
convex optimization for an objection function that does not involve any data:

max
x∈R2

f(x) ≡ ϕ

(
x;

[
−1
−2

]
,

[
4 0.6
0.6 1

])
+ ϕ

(
x;

[
2.5
2

]
,

[
2.25 −0.45
−0.45 2.25

])
(5)
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Algorithm 2 The Density-Tempered SMC Algorithm

Step 0. Initialization: generate a particle set θ(0) from an initialization distribution I(θ). The

initial weight w
(0)
i = 1/N is associated with the initial tempering factor δ0 = 0.

Step 1. Reweighting and determining δp: set p = 1 and search for next δp over a predefined
grid over [0, 1] such that its corresponding ESS, computed for the reweighted particles with

the incremental importance weights w
(p)
i = w

(p−1)
i

[
f(θi|D)
I(θi)

]δp−δp−1

, is greater than 50%×N .

Denote the corresponding reweighted particle set as {θ(p)
i , w

(p)
i }Ni=1.

Step 2. Resampling : randomly draw N particles according to w(p) to produce an equally

weighted particle set. Denote the resampled particles as {θ(p),r
i , 1/N}Ni=1.

Step 3. Support-boosting move: proposeN independent particles θ∗ and deploy the Metropolis-
Hasting kernel as described in Algorithm 1 to replace θ(p),r. The Markov chain transition kernel
targets the density-tempered intermediate function fδp(θ|D) ∝ f(θ|D)δpI(θ)1−δp . Denote the

rejuvenated particle set as {θ(p),∗
i , 1/N}Ni=1.

Step 4. Loop: if δp < 1, set p = p+ 1 and return to Step 1.

Step 5. The SMC optimal solution is the particle corresponding to the maximum likelihood
value.

where

ϕ (x;µ,Σ) =
1

|Σ|
e−

1
2 (x−µ)′Σ−1(x−µ).

We can visualize the target function in Figure 1. The function has two local modes, with the
global maximum at x = [−0.9972,−1.9990]′. This target function can of course be viewed as a
density function missing its norming constant. Typical gradient-based optimizers are known to
be prone to trapping in local maxima. Therefore, a common practice is to initialize the optimizer
at multiple locations. However, there is no guarantee nor practical robustness to ensure that the
global solution can be found this way. For the above example of two local maxima and due to
its simplicity, using multiple initialization points will almost certainly be able to locate the global
maximum. We use the example mainly to illustrate the use of SMC optimization and a host of
issues concerning optimization.

Figure 2 presents the results obtained by a standard density-tempered SMC algorithm using a
particle set of 1,000.1 Figure 2a is a scatter plot of the final particles from one SMC run. The
sample shows concentration around the two modes, forming an empirical distribution of the
target function. Figure 2b displays the distribution of the optimal solutions (the point which has
highest functional value) from 500 independent SMC runs (using different random seeds). The
plot shows that SMC is indeed a global optimizer because all the 500 solutions scatter around
the global maximum marked by a cross.

1We initialize the sample for (x1, x2) from two independent single-variable samplers with each being N (0, 52).
For move steps, we adopt a proposal sampler that is a mixture distribution combining with equal probabilities of
two components: (1) an independent normal distribution using the means and the standard deviations derived
from the existing SMC particles, and (2) a random walk proposal based on a scaled-down standard deviations used
in the independent proposal. For each tempering stage, move steps are repeated until the cumulative acceptance
rate exceeds 200%.
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Figure 1: The bi-modal target function in equation (5)

There are easy ways to achieve a higher precision for the SMC solution, and we will take up the
issue later in Section 3.

(a) Empirical distribution in one 1000-particle SMC
run

(b) Optimal solutions from 500 independent
1000-particle SMC runs

Figure 2: SMC optimization for the bi-modal target function in Equation (5)
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2.3 Expanding-data SMC
Let π(θ|x1, · · · ,xT ) be a posterior distribution for the data {x1, · · · ,xT } independently drawn
from some static model with parameter θ. Chopin (2002) proposed an iterated batch importance
sampling algorithm for estimating the parameter. Common simulation procedures consist of
numerous iterations, and within each the full sample will be evaluated. This can be very inefficient
for large datasets. Therefore, Chopin (2002) proposed to first perform a “preliminary” exploration
over part of the data, then sequentially add the rest of the data to the sample.

To start, one can target π(θ|x1, · · · ,xt, t < T ) to obtain a preliminary estimation using the first
t observations. Then, update the estimate by adding p observations, i.e., the target distribution
becomes π(θ|x1, · · · ,xt+p, t+p < T ). The observations are sequentially added until the whole
sample has been exhausted to provide the Bayesian inference based on the full dataset. Fulop
and Li (2013) is an example of application where they use a particle filter to evaluate a complex
likelihood function in order to perform the Bayesian analysis.

Naturally, the expanding-data algorithm, a term coined in Duan and Fulop (2015), is restricted
to statistical optimization where data are involved. To go beyond its Bayesian inference origin,
we need to do away with the prior belief; that is, the target function is L(θ;x1, · · · ,xT ) instead
of π(θ|x1, · · · ,xT ). In addition, an initialization sampler as in 2.2.2 is needed to replace the
prior distribution to start the recursive system for the initial batch of data. Correspondingly, the
initial importance weight becomes

w(0) =
L(θ;x1, · · · ,xt)

I(θ)
(6)

Resampling and support-boosting moves give rise to an equally-weighted sample representing
L(θ;x1, · · · ,xt). The system is then ready for advancing to next data batch with the incre-
mental weight:

w(1) =
L(θ;x1, · · · ,xt+p)

L(θ;x1, · · · ,xt)
= L(θ;xt+1, · · · ,xt+p|x1, · · · ,xt). (7)

Note that {xt, t = 1, 2, · · · , T} need not be an i.i.d. sequence. If, for example, xi is autoregres-
sive of order one, L(θ;xt+1, · · · ,xt+p|x1, · · · ,xt) can be simplified to L(θ;xt+1, · · · ,xt+p|xt).
If the data are realizations of a state-space model, equation (7) is valid but cannot be further sim-
plified. The same logic recursively applies to subsequent adding of data batches. The description
for the expanding-data algorithm is in Algorithm 3.

The above incremental-weight formula indeed suggests a less costly evaluation of the incremen-
tal likelihood function because it is limited to the new data batch. It is deceptive, however,
because the Metropolis-Hastings support-boosting step described earlier still needs to evaluate
the likelihood function of the entire data sample.

As an optimization method for a static dataset, Duan and Fulop (2015) showed that density-
tempered SMC dominates expanding-data SMC, particularly when the data contains outliers.
This is intuitively understandable because expanding-data SMC may cause the parameter particle
cloud to temporarily stray away from the ultimate target, i.e., the whole-sample MLE.

However, the expanding-data SMC algorithm is a natural choice for live updating systems,
where new data arrive as time goes by. Interestingly, combining the two SMC algorithms forms
a complementary solution for online optimization. When adding a data batch via equation (7)
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Algorithm 3 The Expanding-Data SMC Algorithm

Step 0. Initialization: generate an particle set of size N , θ(0), from an initialization distribution
I(θ). Denote b the batch number and set b = 1.

Step 1. Reweighting : if b = 1, update weights according to equation (6), otherwise update

weights by equation (7). Denote the reweighted particle cloud as {θ(b)
i , w

(b)
i }Ni=1.

Step 2. Resampling : randomly draw N particles according to w(b), resulting in an equally

weighted particle set. Denote the resampled particles as {θ(b),r
i , 1/N}Ni=1.

Step 3. Support-boosting move: proposeN independent particles θ∗ and deploy the Metropolis-
Hasting kernel as described in Algorithm 1 to replace θ(b),r. The Markov chain transition kernel
targets the intermediate posterior distribution π(θ|x1, · · · ,xt+(b−1)p). Denote the rejuvenated

particles by {θ(b),∗
i , 1/N}Ni=1.

Step 4. The updated optimal parameter is the particle corresponding to the maximum likelihood
value of data up to current batch.

Step 5. Loop: if b < B, where B is the total number of batches, set b = b + 1 and return to
Step 1.

might be too ambitious due to its significant impact, one can easily introduce tempering steps.
An application and discussion of combining the two algorithms is available in Duan and Fulop
(2013), where the authors explained how the two algorithms can be applied for operations that
involve real-time updates. Indeed, the combined approach has already been implemented for a
live corporate default prediction system maintained under the Credit Research Initiative at the
National University of Singapore.2

We now show an example of fitting a logistic regression to the credit card default dataset of
Yeh and Lien (2009) by using the data-expanding SMC algorithm. Mathematically, the model
is defined for the two-class (default and non-default) dataset with many predictive features and
n data instances, denoted by {xi; i = 1, 2, · · · , n}, as follow:

Pdefault =
1

1 + exp (−β0 − x′β)
(8)

Pnon-default = 1− Pdefault (9)

The sample has in total 30,000 data instances (including 6,636 defaults and 23,364 non-default
cases) and 23 predictors.3 We split the dataset into 1,000 batches with 30 data instances per
batch. To illustrate, we only display the estimation results on two parameters in Figure 3.
Figure 3a and 3b shows the two evolution paths of parameter values as data batches being
added. The red dashed horizontal line identifies the corresponding optimal parameter value.
The grey confidence bands are calculated using 1.96 times the standard deviation derived from
the particle set at each data-expansion point. Note that the variation of parameter values can
be large. The magnitude can be much more severe if there is a dynamic structure in data (e.g.,
the business/credit cycle effect on financial time series).

2Please refer to NUS-CRI (2021) for technical details. General information and data are available at https:
//nuscri.org/en/.

3Readers may refer to Yeh and Lien (2009) for the features used for default prediction.
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Figure 3c records the computing time versus the batch number. A longer computing time is
generally required to complete a single data batch as batches being gradually added, because the
Metropolis-Hastings support-boosting step must be operated on the likelihood of the cumulative
data sample whose size is increasing. However, the computing time is not always monotonically
increasing because each update may require a different number of Metropolis-Hastings move
steps to reach the targeted cumulative acceptance rate of 200%.

2.4 Constrained optimization
Constrained optimization problems are common in real-world applications. Variable constraints
can vary widely from simple bounds to systems of equalities/inequalities. It may become difficult
for gradient-based optimization methods to handle very complex and/or non-convex constraints.
SMC sampling techniques can, however, deal with all kinds of constraints in a rather straightfor-
ward way. For simple lower and/or upper bounds, one can deploy truncated sampling distributions
to generate particles. More generically, it is straightforward to introduce an indicator function,
χ(x ∈ C) which equals 1 when the constraints are met and 0 otherwise, into the objective
function to become a modified target function f(x)χ(x ∈ C) in order to handle the constraints
through rejection. Incorporating complex constraints through modifying the objective function
has, for example, adopted by Duan and Li (2021) and in the National University of Singapore
Credit Research Initiative’s monthly calibrations of its corporate default prediction system (see
NUS-CRI, 2021).

From an algorithmic point of view, the SMC algorithm only needs an additional simple condition
check when new particles are proposed (in both the initialization and support-boosting move
stages); that is to set the target function’s value to 0 (−∞ if computing a log-objective function)
for particles that do not satisfy the constraints. The constraints may also call for a revision to the
initialization sampler if density-tempering cannot generate an initial set of particles that meets
the ESS threshold.4 Finding a revised initialization distribution is rather straightforward. One
can, for example, continue to sample until finding a suitable number of particles with strictly
positive target functional values. Then, proceed to use this subset to come up with the new
location and scale parameters for the revised initialization sampler.

Below we show that the SMC sampling technique can easily optimize the same function as in
section 2.2.4 under a non-convex constraint that hollows out the two-dimensional Euclidean
space with a square:

C = R2 \ {x1 ∈ (−3, 0) and x2 ∈ (−3, 0)} (10)

The original global optimal solution violates the constraint, and the new optimal point be-
comes xopt = [0.0,−1.8451]′. We apply a standard density-tempered SMC algorithm to target
f(x)χ(x ∈ C) with 1,000 particles. Figure 4a shows the empirical distribution formed by the final
particle set from one SMC run, and with which one can locate the Monte Carlo estimate for the
optimal solution. Figure 4b then displays the 500 optimal solutions found from 500 independent
1000-particle SMC runs. Note that the SMC solution’s precision can be readily improved via
data cloning or k-fold duplication to be described in Section 3.

4This situation will occur when the set has less than, say, 500 particles with strictly positive target functional
values when the ESS threshold is set to 500.
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(a) Parameter for attribute “Credit Card Limit”

(b) Parameter for attribute ”Education Level”

(c) Single-batch computing time

Figure 3: Evolution of two parameter values and single-batch computing time in an expanding-
data 1000-particle SMC run
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(a) Empirical distribution in one 1000-particle SMC
run

(b) Optimal solutions from 500 independent
1000-particle SMC runs

Figure 4: SMC constrained optimization for the bi-modal target function in equation (5) subject
to the constraint in (10)

2.5 Optimization for discontinuous functions

A multidimensional step function defined over Rk is an example of discontinuous function. If an
optimum exists, the solution will be a non-singleton set of k-dimensional points sharing the same
optimal functional value. Naturally, gradient-based optimization methods are ill-suited for the
task, but SMC can readily handle such a function as demonstrated in Duan and Li (2021). Their
optimization task is to find the cutoff boundary values and through which to map probabilities
of default (PDs) into implied credit ratings by referencing the credit migration history of a credit
rating agency such as S&P or Moody’s. This PD-implied rating methodology improves upon an
existing mapping method solely based on matching to historical average default rates of different
rating categories.

Two datasets are relevant to Duan and Li (2021)’s model. First, take, say, the S&P reported
annual credit migration matrices tallied over 18 years for its global rating pool in which rated
firms are consolidated into nine categories without modifiers (i.e., AAA, AA, A, BBB, BB, B,
CCC, CC and C). The second is the NUS-CRI database of PDs offering over 80,000 exchange-
traded firms globally that we have referred to previously in Footnote 2. These PD data can be
used to deduce model-generated credit migration matrices over the same time period. Naturally,
the cutoff values will determine the behavior of the model-generated credit migration and a small
perturbation may cause some implied credit migration matrices to jump discretely.

Duan and Li (2021)’s model defines eight cutoff values and links them to the buffer zones used
to mimic the strong rating stickiness observed in any credit rating agency’s data. The model also
utilizes the same cutoff values to further define rating modifiers such as AA+, AA-, BBB+, etc.
They deployed density-tempered SMC to find the eight optimal cutoff values that best match
the model-generated matrices with the corresponding observed rating migration matrices. Since
the objective is a multidimensional step function, the solution is not unique. Due to a large
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number of firms in the NUS-CRI database, this non-singleton solution set has a pretty small
Lebesgue measure, and thus non-uniqueness makes no material difference for practical purposes.

2.6 Combinatorial optimization
Combinatorial optimization problems are mostly NP-hard, which make them difficult to solve.
Generally speaking, discrete optimization algorithms can be divided into two categories: the exact
and meta-heuristic methods. Exact algorithms, such as the branch-and-bound algorithm (Land
and Doig, 1960) and dynamic programming methods, are guaranteed to find an optimal solution
whose optimality is provable. However, the run-time often increases dramatically with dimension
of the problem, therefore their capability in solving high-dimensional problems is limited. In
contrast, the family of meta-heuristic algorithms trades optimality for run-time. Some popular
algorithms include simulated annealing (Kirkpatrick et al., 1983), genetic algorithms (Holland,
1992), tabu search (Glover and Laguna, 1999) and evolutionary algorithms.

The SMC approach to combinatorial optimization invented by Duan (2019) is a provable ap-
proach relying on Monte Carlo convergence. It is not meta-heuristic because convergence to the
right solution is ensured as the sample size gets large. It is also a practical approach because
solutions can be found within a reasonable amount of computing time and the Monte Carlo error
can also be assessed. The methodological essence of SMC optimization for combinatorial prob-
lems is to view the optimization target as a discrete probability function and proceed to sample
from it. The point yielding the highest probability is the SMC solution. With a sufficiently large
particle set, the method will in principle obtain the global maximum. The approach can be
applied to many combinatorial optimization problems with minor tweaking to the sampler.

Duan (2019)’s design specifically aims at selecting a subset from a very large set of potential
variables in linear regressions where a zero-norm penalty is used instead of L1-norm as in the
popular Lasso of Tibshirani (1996). Duan (2019) formulated the target function for selecting s
variables out of P potential feature variables under zero-norm as follows:

argmax
U∈P (s)

exp
{
−||y −XU β̂(U)||2l2

}
(11)

where y is the n-dimensional column vector for the response variable, X is the n×P matrix of
features, P (s) denotes {U ∈ P×s and U1 ̸= U2 ̸= · · · ≠ Us}, P×s stands for the s-Cartesian
product of the set of P variables, XU denotes the sub-matrix of X whose columns correspond to
the features’ sequence numbers in U , and β̂(U) = (X ′

UXU )−1X ′
Uy is the optimal regression

β when U is known.5

The target function in (11) is totally discrete but can be viewed as a probability function short
of a norming constant. This target function is permutation-invariant if they form the same
combination. Duan (2019) proposed to use the single-variable regression R2 to set the indi-
vidual variable’s initialization probability. Sampling takes s-variable permutations because this
probability is easily computable whereas the combination probability is harder to evaluate. The
proposal probabilities for the Metropolis-Hastings move during the density-tempered SMC run
are updated by counting the individual variable’s occurrences in the SMC sample.

5It is our understanding that Duan (2019) has introduced a self-adaptive tuning parameter λ in his algorithmic

implementation to in effect target exp
{
−λ||y −XU β̂(U)||2l2

}
. This tuning parameter does not affect the

theoretical solution but can shape the target function to better achieve a separation of the optimal solution from
others.
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Satpathy and Shah (2022) has, for example, deployed this combinatorial optimization technique
to solve the sparse stock index tracking problem that is widely applicable to the management
of passive funds. Here, we use the Ames housing dataset compiled by De Cock (2011) to
demonstrate Duan (2019)’s algorithm.6 The dataset contains 79 features and a response variable,
which is the house sale price.7 Table 1 presents the selection results. To benchmark, we also
present the selection results using the Lasso regression of Tibshirani (1996) followed by a post-
selection OLS regression. We apply a 3-fold cross validation in both cases to avoid over-fitting.
Using a higher number of folds can lead to a more stable model, but will take longer time to
complete the task.

1st-order terms 1st + 2nd-order terms
Total # of features = 80 Total # of features = 80 + 3,1018

Zero-norm SMC Lasso + OLS Zero-norm SMC Lasso + OLS
# of features selected 15 37 16 38

R-Squared 0.8430 0.8576 0.9252 0.9067
Computing time: single run 8s 0.007s 6m40s 0.22s
Computing time: 3-fold CV 4m20s 0.04s 2h34m 3s

Table 1: Comparison of feature selections via zero-norm SMC and Lasso

The left panel of Table 1 shows results for selection out of 80 potential variables (79 features
plus the intercept). It is evident that Lasso has selected substantially more features (37 vs 15)
with a marginal improvement in R2 (85.76% vs 84.3%). Lasso is obviously a much more efficient
algorithm using a tiny fraction of the computing time needed for the zero-norm SMC selection
algorithm.

Quite common in regression analysis is to consider interaction terms created from the original
feature variables. In the right panel of Table 1, the selection results are for choosing a subset
of features from 3,181 potential variables that include all second-order non-redundant terms8.
The zero-norm SMC algorithm selects 16 variables, and among them, 15 are the 2nd-order
terms, leading to a substantial improvement in R2 as compared to only using the 1st-order terms
(92.52% vs 84.3%). For example, the interaction term, overall quality rates × year built9, has
a highly significant, positive coefficient, implying that higher prices are mainly for better-quality
and newer houses. Again, Lasso has grossly over-selected variables (38 vs 16). But this time,
more selected features actually lead to a counter-intuitively lower R2, indicating a questionable
selection performance.

Lasso’s poor ability in handling multicollinearity is known in the literature (e.g., Zhao and Yu,
2006, Herawati et al., 2018). Duan (2019) provided a rather intuitive explanation for this
shortcoming. Lasso regression minimizes an L2 loss while slaps an L1 penalty. Note that the L2

loss is invariant to linear transformations but the L1 penalty is not. In short, multicollinearity
alters the penalty but leaves the loss intact, leading to an unpredictable behavior when facing
multicollinearity. Duan (2019) also provided an extensive simulation study to document Lasso’s

6This zero-norm variable selection algorithm has been implemented in DeepSelect®, a proprietary software
accessible upon request at: https://variableselection.nuscri.org.

7A description of the 79 features is available at http://jse.amstat.org/v19n3/decock/DataDocumentation.txt.
8All redundant 2nd-order terms are removed (e.g., the intercept multiplying by a feature). Furthermore,

almost perfectly linearly dependent 2nd-order terms are also removed.
9Quality rates run from 1 to 10 with 10 being the best. ”year built” indicates the calendar year of construction

so that a larger value means a newer house.
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tendency to grossly over-select variables when different levels of correlation are present. Among
the 3,181 features in this Ames housing dataset, there are 12,069 pairs with absolute correlations
larger than 0.9, explaining why Lasso grossly over-selects features.

2.7 SMC2 optimization
SMC is widely used to make inference for latent variable models either for the latent states
(e.g. the problem of filtering and smoothing), the model parameter θ (both from the frequentist
and Bayesian point of views), or both (i.e., the joint estimation of the latent states and model
parameters). There has been an extensive literature on this, e.g., Doucet, Johansen, et al.
(2009), Duan and Fulop (2009), Kantas et al. (2009), Kantas et al. (2015), Xu (2018), Duan
et al. (2020), to name just a few.

When considering latent variable models, the challenging problem is to conduct inference using
the joint density of the parameters and the latent variables, i.e. the inference of f(θ,U |D) where
U denotes the latent variables. By targeting f(θ,U |D), the parameter estimation problem is
solved by marginalization. If Monte Carlo based methods are deployed, the inference of θ
targeting the marginal distribution f(θ|D) can be made by simply discarding the U component
from the particle set {θi,Ui}Ni=1. To address the complicated and challenging joint density
problem, the two-layer approach, commonly referred to as SMC2, has been proposed in the
literature. Various SMC2 methods in Chopin et al. (2013), Fulop and Li (2013), Duan and
Fulop (2015), Duan et al. (2020), Jasra et al. (2021), etc are available.

Common to all is that the inner layer runs a fixed-parameter SMC by marginalizing out the
latent states while the outer layer runs SMC on the model parameters targeting the marginal
distribution of θ, which is of a much lower dimension. The inner layer is closely related to the
work pioneered by Gordon et al. (1993), where particle filtering could be used to provide an
unbiased approximation of the observed data likelihood for a dynamic model. In short, it is a
SMC way to marginalize the joint likelihood function by integrating out the latent variable(s).
Typically, the marginal likelihood function is analytically intractable when the model is, for
example, a non-linear or non-Gaussian state-space model.

We now use the density-tempered SMC2 design of Duan and Fulop (2015) to explain. The
density-tempered target in this algorithm is given below, which lies in the space augmented by
some auxiliary random variables U due to the deployment of a particle filter.

fδ(θ,U |D) ∝

(
L̂(θ|D,U)

I(θ)

)δ

φ(U |D,θ)I(θ) (12)

where L̂(θ|D,U) is the SMC estimate of L(θ|D,U), the marginalized likelihood, by applying a
particle filter, and φ(U |D,θ) is the density function for the auxiliary random variables. Travers-
ing through a tempering bridge indexed by δ will advance the system from 0 to 1. Equation (12)

suggests that from δ1 to δ2, the importance weight can be simplified to
(
L̂(θ|D,U)/I(θ)

)δ2−δ1
.

After obtaining the final sample of SMC particles in the augmented space, one proceeds to
marginalize the SMC sample by focusing on θ only.

Two important observations are in order. First, the original design of Duan and Fulop (2015) is for

Bayesian analysis where (1) the target function is the posterior distribution, i.e., L̂(θ|D,U)π0(θ)
in the numerator, and (2) I(θ) is set to π0(θ). Together, it produces a simplified but less com-

putationally efficient density-tempered target: fδ(θ,U |D) ∝
(
L̂(θ|D,U)

)δ
φ(U |D,θ)π0(θ).
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Second, φ(U |D,θ) needs no evaluation because it is always cancelled in the incremental im-
portance weight from, say, δ1 to δ2 and in the acceptance probability defining the Metropolis-
Hastings move. We will apply the SMC2 algorithm on a discrete-time latent stochastic volatility
model later in Section 6.1.

The formulation in Equation (12) allows for computing the maximum likelihood estimate without
having to worry about the non-smoothness of the particle filter with respect to the model
parameters, which is the issue discussed extensively in Kantas et al. (2009) and Kantas et al.
(2015). Pitt (2002) and Malik and Pitt (2011) showed that for one-dimensional latent stochastic
process, the particle filter can be made continuous with respect to the parameters by using
common random numbers to enable the use of a gradient-based optimizer, and Duan and Fulop
(2009) is such an example. When the dimension is two or higher, practical solutions for obtaining
a smooth likelihood function do not yet exist. Thus, Bayesian inference without the need for
optimization seems to be an obvious choice.

Indirectly utilizing the simulated EM algorithm to conduct maximum likelihood analysis is an
alternative. It recognizes a fact that the complete-data log-likelihood’s gradient and Hessian
are computable even though their incomplete-data log-likelihood are not smooth with respect to
parameters. In short, particle filtering at the current parameter values can help with computing
the expected values of those derivatives needed in the optimization step. For the EM approach,
readers can find general discussions in Kantas et al. (2009), Kantas et al. (2015) and Xu and
Jasra (2019), and stable variance estimation in Duan and Fulop (2011).

Now working with Equation (12), directly computing the maximum likelihood estimate when
facing higher-dimensional latent stochastic processes actually becomes practical. Duan et al.
(2020) further showed how to improve the precision of such maximum likelihood estimation by
data cloning, which we will take up the discussion in Section 3.3.

3 Improve SMC sampling quality
Optimization problems in practice often involve complex nonlinear targets with possibly many
local solutions. The classical inference problem for solving the MLE targets a likelihood function
defined with the observed data, i.e., solving the θ that maximizes f(θ|D) = L(θ|D). Except
for simple illustrative cases, L(θ|D) for typical real-world statistical models could be highly
skewed, multi-modal or flat at the optimum. Still, the gradient ascent/descent algorithms are
often adopted for the ML parameter estimation under such circumstances. In many cases,
simulation-based optimization methods are obviously more appealing.

A simulation-based optimum may lack the precision needed unless the simulation sample size is
large enough. It is vitally important to be able to increase sampling accuracy at low computa-
tional costs. In the next two subsections, we present two powerful and yet easily implementable
approaches for increasing the quality of the SMC optimum. After that, we will turn to the
discussion of applying these precision-enhancing methods in the SMC2 setting.

3.1 k-fold duplication
The simple idea of k-fold duplication was proposed by Duan and Zhang (2015) to increase
sampling efficiency. Instead of taking a bigger sample through the SMC steps, one can di-
rectly duplicate by many folds a base sample that has already completed the density tempering
sequence. First, obtain an SMC sample (of size N) representative of the target distribution
f(θ|D). Then, conduct several rounds of “duplicate-and-boost” to rapidly multiply the sample
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size. Duplication of the base sample k folds yields k identical sets of particles. Support-boosting
moves in the same way as in Section 2.2.3 are meant to restore particle diversity for the sam-
ple of kN particles. Since the density-tempering bridge has been completely skipped, k-fold
duplication is much more efficient in generating a larger sample for a target distribution.

We apply one round of 4-fold duplication of 1,000 SMC particles10 to showcase how the method
works on the non-convex optimization problem introduced in Section 2.2.4. Comparing Figure 5
with Figure 2, this 4-fold duplication significantly increases the particle density and thus increases
the precision of the solution.

(a) Empirical distribution of the 4,000 particles from
one SMC run with one round of 4-fold duplication

(b) Optimal solutions from 500 independent
4000-particle SMC runs

Figure 5: SMC optimization with one round of 4-fold duplication of 1,000 particles for the bi-
modal target function in equation (5)

3.2 Data cloning
Data cloning, which emerged from biostatistics (Lele et al., 2007, Lele et al., 2010), was initially
proposed to compute the MLE and its inference for complex ecological hierarchical models. The
same idea concurrently surfaced in Jacquier et al. (2007) for financial time series analysis. As
the name suggests, the observed data D will be cloned many times, say, m, and treat each
cloned copy as if it were an independent sample. The cloned target [L(θ|D)]m becomes the
new target of interest. It is evident that L(θ|D) and [L(θ|D)]m share the same maximizer, and
thus the MLE remains unaltered with cloning.

The optimal solution’s variability due to Monte Carlo simulation can be reduced by cloning for
two reasons. The first one is the usual compression of the variance because the sampled points
begin to concentrate at the rate of m in response to powering. The second effect of cloning is
more nuanced and caused by dampening multi-modality of the target function. Powering up the
target function in effect widens the gap between the functional value at the global maximum

10The proposal sampler used in move steps follows what has been described in Footnote 1. Multiple move
steps are made until the cumulative acceptance rate exceeds 200%.
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(a) Empirical distribution of 1000 particles from one
SMC run with data cloning

(b) Optimal solutions from 500 independent
1000-particle SMC runs with data cloning

Figure 6: SMC optimization with data cloning at the power of 4 for the bi-modal target function
in equation (5)

and those functional values at other local maxima. As stated in Lele et al. (2007) and Lele et al.
(2010), the target distribution becomes centered at the sample MLE with all other local maxima
”flattened” when m is sufficiently large.

Data cloning implemented with a Bayesian computational approach, i.e., starting from the prior
to the posterior distribution, can in effect remove the impact of the prior distribution as the
number of cloned copies increases because the powered-up likelihood function begins to domi-
nate.

The SMC algorithms introduced in Section 2 (i.e., density-tempered SMC and expanding-data
SMC) can be used to generate particles representative of the cloned target. Moreover, the
asymptotic variance of the MLE can be calculated by m times the variance estimated with the
cloned SMC particles that targets [L(θ|D)]m. We will take up the issue of statistical inference
later in Section 6.2.

For general optimization purposes, cloning can still work for target functions that involve no data
at all, i.e., [f(x)]m. Its advantage is clearly shown in Figure 6 where cloning at the power of 4 is
applied to the non-convex optimization problem introduced in section 2.2.4.11 Evidently, Figure
6b reveals increased precision of the optimizer whereas Figure 6a shows the effect of cloning in
reducing the number of particles scattered around a local mode.

Table 2 illustrates the performance of data cloning and k-fold duplication for the target function
in Equation (5). The table presents the results from multiple rounds of cloning at the power

11For each cloning round, we re-initialize particles using the means and standard deviations derived from the
existing SMC particles. The standard deviations are properly scaled down by the square root of the incremental
cloning factor in each round, i.e.,

√
4, to anticipate the variance reduction effect of cloning. The proposal

distribution used in move steps follows what has been described in Footnote 1.

19



of 4 and 4-fold duplication, respectively. Specifically, the ith cloning round raises the target
function to the power of 4i using N particles, whereas k-fold duplication creates 4iN particles
(N = 1, 000 for this table). Table 2 clearly indicates that cloning is more efficient than k-fold
duplication for this bi-modal target function. Although cloning does not change the rate of
variance reduction, it lowers the convergence constant, making the algorithm more effective in
reducing Monte Carlo errors.

Cloning (power = 4) 4-Fold Duplication
Round

x1 x2 x1 x2

-0.9970 -1.9982 -0.9964 -1.9998
1

(0.0383) (0.0185) (0.0437) (0.0222)
-0.9976 -1.9994 -0.9981 -1.9983

2
(0.0154) (0.0074) (0.0220) (0.0109)
-0.9976 -1.9992 -0.9966 -1.9991

3
(0.0081) (0.0040) (0.0109) (0.0056)
-0.9972 -1.9989 -0.9973 -1.9990

4
(0.0041) (0.0019) (0.0053) (0.0027)

Table 2: Comparison of the two precision-enhanced optimizers (mean and standard deviation)
calculated with k-fold duplication and cloning using 500 independent SMC runs

The above results reflect an important fact. Cloning and k-fold duplication share the same rate
of convergence as far as the SMC maximum is concerned but likely face different convergence
constants. This becomes fairly intuitive if we consider a second-order Taylor expansion of the
logarithm of the target function at the maximum. Cloning at the power of 4 in effect has
the same expansion except for reducing the negative Hessian matrix by a factor of 4.12 In a
small neighborhood of the maximum, the target function is very close to a multivariate normal
density function and cloning at the power of 4 is equivalent to halving the standard deviation in all
dimensions. On the other hand, a 4-fold duplication amounts to filling in the same neighborhood
with 4 times of SMC particles at the original standard deviation, which is well known by the
standard Monte Carlo theory to yield the same effect on gaining precision.

As to why the convergence constants may differ, we can appreciate it with a bi-modal target
function like our example. A fraction of SMC particles are generated under a local mode which
contributes nothing to refining the estimate for the global maximum. Without cloning, those
SMC particles essentially have been wasted. The same argument applies to skewed single-mode
target functions. Another way to see this point is to consider a case for which the two approaches
can actually share the same convergence constant. Had we directly targeted a normal density
function, cloning and k-fold duplication would carry the same convergence constant in addition
to facing the same convergence rate.

The above comparison shows the superiority of cloning over k-fold duplication. However, it is
only true for continuous target functions where further solution refinements are feasible. When
the target function is discontinuous as in Section 2.5 or totally discrete as in Section 2.6, only
k-fold duplication is applicable because cloning will always cause the SMC sample to degenerate
as m increases.

A nuanced complementarity between k-fold duplication and cloning deserves elaboration. After

12This property will become clear later in Section 6.2.
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completing a sufficient number of cloning rounds, one should actually switch to k-fold duplication
if the interest goes beyond finding the optimum. First of all, the quality of the SMC optimum
under two refinement approaches at that point of cloning has become identical in terms of either
the convergence rate or the convergence constant, because the cloning rounds completed have
in effect removed multi-modality and/or skewness. Under cloning, the SMC sample size remains
constant but k-fold duplication increases it at the k-fold speed. The standard deviations or other
statistics deduced from the SMC sample, for example, will be increasingly more accurate under
k-fold duplication but will not be so with cloning.

Significant cloning is more demanding on the coding practice because numerical precision can
be easily lost if, for example, one sticks to multiplications and divisions of exponential functions
in the importance weight instead of thinking in terms of additions and subtractions of their
logarithmic equivalent quantities. Exponentiation should be reserved as the last step on the
need basis. One should also refrain from multiplying the potentially very large cloning factor
and save it for the last step after all additions and subtractions have been completed.

3.3 Data-cloning SMC2

It is straightforward to apply k-fold duplication on statistical models embedded with latent
variable(s) to turn it into an SMC2 setting. But applying data cloning on a model with latency
is much more nuanced and complex because the particle filter’s accuracy in the inner SMC layer
will begin to interfere with the rapidly decreased parameter dispersion due to cloning.

Continuing with the notations in Section 2.7, we now describe the data-cloning SMC2 algorithm
of Duan et al. (2020). When necessary, we modify the notations slightly to accommodate data
cloning. This algorithm relies on constructing a sequence of targets with their marginal distribu-
tions proportional to the cloned likelihoods, [L(θ|D)]m for m = 1, 2, · · · , using m independent
runs of a fixed-parameter particle filter (or average likelihood for non-dynamic models) each with
p particles. The common feature of this inner layer is that they are unbiased estimates of the
true likelihood powered up to m.

In addition, a tempering bridge of intermediate cloned target functions is defined and governed by
0 ≤ δ ≤ 1. Let Im(θ) denotes the (re-)initialization sampler at the m cloning stage. Specifically,
the density-tempered target function is

fδ,m(θ,U1:mp|D)

∝


(

L̂(θ|D,U1:p)
I(θ)

)δ
φ(U1:p|D,θ)I1(θ) if m = 1(

f1,m−1(θ,U1:(m−1)p|D)L̂(θ|D,U(m−1)p+1:mp)

Im(θ)

)δ

φ(U(m−1)p+1:mp|D,θ)Im(θ) if m > 1
(13)

At m = 1, it is essentially the SMC2 algorithm of Duan and Fulop (2015) being implemented
without the prior distribution per the early discussion in Section 2.7. When m > 1, Duan et
al. (2020) set Im(θ) = f1,m−1(θ,U1:(m−1)p|D) as the re-initialization distribution because it
is already represented by the SMC sample at the m − 1 cloning stage. Traversing through a
tempering bridge indexed by δ then advances the system to the desired m. By Equation (13),

advancing from δ1 to δ2 faces a simplified importance weight:
(
L̂(θ|D,U1:p)/I(θ)

)δ2−δ1
ifm =

1, or
(
L̂(θ|D,U(m−1)p+1:mp)

)δ2−δ1
if m > 1 and deploying Im(θ) = f1,m−1(θ,U1:(m−1)p|D)

as in Duan et al. (2020).
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It is evident from the above that the m-stage outcome at the end of the tempering bridge
becomes

f1,m(θ,U1:mp|D)

∝

(
m∏
i=1

L̂(θ|D,U(i−1)p+1:ip)

)(
m∏
i=1

φ(U(i−1)p+1:ip|D,θ)

)
(14)

So, this SMC2 algorithm actually targets, ignoring the component associated with the auxiliary
random variables needed for the particle filter,

∏m
i=1 L̂(θ|D,U(i−1)p+1:ip) whose expected value

equals [L(θ|D)]m because the particle filter is known to provide an unbiased estimate of the
likelihood function.

Data cloning will magnify the Monte Carlo error inherent in the particle filter, i.e., the inner
layer of SMC2. Duan et al. (2020) offered a self-adapted way to determine p in response to
an increased m. Basically, p will be increased for the added block from a new independent
particle filter run whenever the acceptance rate in the Metropolis-Hastings move drops below a
threshold value, say, 20%. The increased p requires a re-initialization of the algorithm but it is
highly efficient by leveraging the already obtained SMC particles to design the re-initialization
sampler.

Duan et al. (2020) has applied with success their SMC2 algorithm on several prominent latent-
variable models. They also demonstrated that it is far more efficient than, for example, the
method proposed by Johansen et al. (2008) or the direct implementation of Duan and Fulop
(2015) with data cloning13.

4 Assess reliability of the SMC maximum
Duan (2019) developed a method for assessing the quality of the SMC optimum by treating it as a
maximum order statistic. The method hinges on applying the Fisher-Tippett-Gnedenko Extreme
Value Theorem (EVT) to the sample of functional values evaluated with the SMC particles.
Since the maximum exists, the EVT limit of the sample maximum functional value becomes the
Weibull distribution, which can then be used to determine how far the current maximum found
is from the true maximum and how large the probability is for further improvement.

The Weibull distribution for the block-maximum functional value is the EVT limit for large M :

Ffmax(M)(z; f
u, α, η) = exp

[
−
(
fu − z

η

)α]
for z ≤ fu (15)

This distribution has three parameters: fu, α and η.14 Let f̄u denote the maximum functional
value recorded in the entire SMC progression, which may be strictly larger than any fmax(M) =
max {fi; i = 1, 2, · · · ,M}, where M < N is the maximum functional value over a block of size
M in the final SMC sample of size N .

13A direct implementation of Duan and Fulop (2015) with data cloning means targeting
[
L̂(θ|D,U1:p(m))

]m
where p(m) used in the particle filter reflects cloning and is of a comparable size as the competing algorithm.

14The Weibull distribution in (15) can be treated as a two- or three-parameter distribution function. Taking
fu, α and η as unknown, this distribution has three parameters. Let G(f) be the distribution of target function’s
value and G←(x) ≡ inf{f : G(f) > x} be its the left continuous inverse. If we use the empirical distribution
derived from the final SMC sample to approximate G(f), then η = fu − G←(1 − 1/M ′) is redundant and the
Weibull distribution only has two unknown parameters.
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In estimation, it is natural to constrain fu ≥ f̄u. The parameter estimate f̂u ≥ f̄u predicts
the true maximum functional value. The estimated exceedance probability for making further
improvement by increasing N becomes 1− Ffmax(M)(f̄

u; f̂u, α̂, η̂).

We demonstrate how the EVT works on optimizing the target function in equation (5). First,
we obtain 2,000 SMC particles sampled without cloning and generate another sample of the
same size with cloning. Each set of 2,000 particles is randomly partitioned into 20 blocks each
with 100 particles. Fitting a Weibull distribution to the 20 block-maximum functional values
yields Figure 7 for the two SMC samples of 2,000 particles each. The two estimated Weibull
distributions suggest that the currently found maximum in either case is very close to the EVT-
predicted optimum. In principle, the EVT prediction using the cloned SMC sample at the power
of 4 should provide a more accurate prediction. However, Figures 7a and 7b suggest a rather
minor improvement.

(a) Without cloning (b) With cloning at the power of 4

Figure 7: The EVT-predicted Weibull distribution (constructed with 2,000 SMC particles parti-
tioned into 20 random blocks each with 100 particles) for the maximal functional value of the
target in equation (5)

The EVT-estimated exceedance probability is 3.52% using the 2,000 SMC particles without
data cloning whereas that probability becomes 0.93% with data cloning at the power of 4. Even
with a small chance of improving the SMC solution, say, 0.93%, the magnitude of potential
improvement (from 0.274788 to 0.274807) as shown in Figure 7b is negligible for most practical
purposes. Further improvements, if called for, are straightforward with additional rounds of
cloning or 4-fold duplication to raise the refinement factor to 16, 64 or even higher.

5 MCMC vs. SMC for optimization
Markov Chain Monte Carlo (MCMC) methods are a class of algorithms that are commonly
used for generating samples from a desired distribution. The most popular MCMC methods are
based on the Gibbs sampler (Geman and Geman, 1984) or the Metropolis-Hastings algorithm.
In principle, they can also be applied to solving optimization problems. Lele et al. (2007)’s
data cloning through applying MCMC can, for example, be interpreted as optimization. In the
meta-heuristic category of optimization methods, the Metropolis-Hastings algorithm has also
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been adapted to work for simulated annealing, but it is not really an MCMC algorithm.

In contrast to SMC, there are several disadvantages with MCMC methods. First, the generated
Markov chain needs “burn-in” before the simulated particles can be really regarded as random
draws from the target distribution. The length of burn-in period can also be difficult to adequately
determine. Second, the choice of the proposal distributions is a crucial factor determining
MCMC’s performance. Unlike SMC, where one can simply derive an independent proposal from
the particle set, MCMC only has one chain before reaching its stationary distribution, which
is of limited value to designing a natural proposal sampler. Finally, the MCMC particles after
burn-in can be highly autocorrelated. These MCMC-induced autocorrelations in turn render the
estimator much less precise.

In an intuitive way, SMC can be interpreted as concurrently running many independent MCMC
chains but needs no burn-in at all. First, we note a key property of Markov transition kernel
permitting stationary distribution, and that is, an input sample drawn from its stationary distri-
bution will churn out a different sample from the same stationary distribution. Since SMC starts
from a sample based on the stationary distribution via importance sampling and resampling,
burn-in is not needed. The use of the Metropolis-Hastings kernel is solely to boost the empirical
support, i.e., to get rid of duplicated particles due to resampling.

We now use MCMC to solve the same multi-modality problem defined in Section 2.2.4 and
compare its performance with the density-tempered SMC method. Specifically, we run 500 inde-
pendent MCMC chains using the Metropolis-Hasting algorithm with a random walk proposal.15

To ensure reasonable convergence, we first run 10,000 iterations for each of the 500 chains for
the burn-in purpose. We then obtain 1,000 post-burn-in particles by iterations in each MCMC
run and use the sample to find the MCMC maximum. Figure 8a displays the distribution of
the 500 optimal solutions. It is fairly clear from comparing them with those in Figure 2b that
the MCMC solutions vary much more. Evidently, it is simply a manifestation of the fact that
those MCMC particles are highly autocorrelated in either one of the two dimensions as shown
in Figure 8b.

A simple but not yet recognized improvement step can be applied to the MCMC sample. We
can run the MCMC sample through the SMC support boosting step several times to obtain an
independent MCMC sample. In fact, one can first apply k-fold duplication to significantly enlarge
the MCMC sample and then put the particles through support boosting. To illustrate the power
of such a simple trick, we only take the first 500 MCMC particles after burn-in and apply 2-fold
duplication to yield a sample of 1,000 particles. Send it through the support-boosting step five
times using the Metropolis-Hastings kernel constructed with the independent proposal sampler
that is normally distributed with the means and variances based on the original sample of 500
MCMC particles. Evidently from inspecting Figure 8c vis-a-vis Figure 8a, the SMC-modified
MCMC sample has delivered a much better performance.

Figure 8d clearly shows that the modified sample no longer exhibits any meaningful autocor-
relations. Skipping particles in the MCMC sample has been a typical way of reducing sample
dependency. The autocorrelation patterns exhibited in Figure 8b suggests that even retaining
one particle in every block of 20 will still burden the sample with significant autocorrelations.

The particle-MCMC approach in Andrieu et al. (2010) and Doucet et al. (2015) have been
proposed in the literature to handle statistical models with latent variables. The underlying idea

15We initialize the sample for (x1, x2) from two independent single-variable samplers with each being N (0, 52).
For the random walk proposal in the Metropolis-Hasting algorithm, the standard deviation is set to 1.
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(a) Optimal solutions for the bi-modal target func-
tion in Equation (5) from 500 independent MCMC
runs

(b) Autocorrelations of the sample from one
MCMC run

(c) Optimal solutions for the bi-modal target func-
tion in Equation (5) from 500 independent SMC-
modified MCMC runs

(d) Autocorrelations of the sample from one SMC-
modified MCMC run

Figure 8: Optimization performance of MCMC and SMC-modified MCMC using a sample of
1,000 particles after burn-in

is that marginalization first with a particle filter can help reduce the complexity of the problem
for MCMC to focus on parameter estimation. The SMC2 algorithm discussed in Section 2.7 and
3.3 relies on the same marginalization idea. Now it should be fairly clear that SMC2 can be
expected to be more efficient than particle-MCMC for latent-variable models.
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6 Statistical inference

6.1 Bayesian inference
SMC originates from Bayesian statistics and has been widely used in Bayesian inference. In those
analyses, the particles generated by SMC are to represent the posterior distribution, summarizing
the information in the data and combining it with the prior belief.

Applying SMC on state-space models is natural due to the inherent in the system. Kantas
et al. (2009) and Kantas et al. (2015) provided earlier reviews of parameter estimation for
general state-space models under both Bayesian and frequentist frameworks where SMC is only
deployed to evaluate the fixed-parameter likelihood function. Our discussion in this section focus
on using SMC as an Bayesian inference tool on parameters instead of a computational means
for computing the likelihood value at the fixed parameters. Therefore, it is in line with Chopin
(2002), Del Moral et al. (2006), Fulop and Li (2013), Duan and Fulop (2015), among others
that rely on SMC to arrive at the posterior distribution.

Differing from the typical Bayesian literature, it will be more efficient to leverage the initialization
sampler I(θ) as discussed in Section 2.2.2 and to reformulate the posterior distribution as a
special case of a density-tempered target function; that is π(θ|D) = f1(θ|D) where

fδ(θ|D) ∝
(
L(θ;D)π0(θ)

I(θ)

)δ

I(θ) (16)

Were we to initialize with the prior distribution, i.e., I(θ) = π0(θ), that would bring us back to
the standard approach commonly seen in the Bayesian literature.

Evidently, different initialization samplers do not alter the posterior distribution but may affect
the computational efficiency of the density-tempered SMC algorithm. If the data is highly
informative, the posterior distribution is by definition far different from the prior distribution.
Thus, using the prior distribution to start the SMC process as typically seen in the literature
is bound to be highly inefficient. Decoupling the initialization and prior distributions is an
important insight because it allows analysts to experiment with different initialization samplers
without changing their prior beliefs.

We now demonstrate the use of SMC2 for Bayesian inference on the parameters of a latent
variable model. Specifically, we deploy the SMC2 algorithm of Duan and Fulop (2015) and
illustrate with a standard discrete-time stochastic volatility model as in Duan et al. (2020) but
using data on a different stock market index over a more recent time period.

The dynamics of the observed and latent processes under the standard discrete-time stochastic
volatility model are specified as follows:

yt = σt−1ϵt (17)

logσ2
t = α+ ϕ logσ2

t−1 + σv ηt (18)

where [
ϵt
ηt

]
∼ N

(
0,

[
1 ρ
ρ 1

])
and logσ2

0 ∼ N
(

α

1− ϕ
,

σ2
v

1− ϕ2

)
Since there is no closed-form solution for the likelihood function of this model, SMC2 is used
where the inner layer runs a fixed-parameter particle filter to estimate the observed data likelihood
and the outer layer conducts SMC on the model parameter to target the posterior distribution.
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The parameter vector of interest is θ = (α, ϕ, σv, ρ) with −1 ≤ ϕ ≤ 1, −1 ≤ ρ ≤ 1 and σv > 0.
The posterior inference on θ is conducted with a 6-year daily log-return series (T = 1507) of
the Straits Times Index between January 1, 2016 and December 31, 2021. The prior is set to
be relatively uninformative, with a four-component truncated Gaussian distribution having the
mean vector of (0, 0.9, 0.5, 0) and a diagonal covariance matrix where the diagonal entries are
(1, 0.1, 0.5, 0.2). The initialization density I(θ) is set to be the same as the prior. The proposal
sampler in the support-boosting step is constructed by fitting a four-component mixture normal
model to the SMC sample of the parameter particles at that stage.

Parameter Mean Standard Deviation
α -0.5608 0.0345
ϕ 0.9431 0.0035
σv 0.2658 0.0087
ρ -0.3597 0.0077

run time 277.3293 33.3890

Table 3: Summary statistics on the posterior means of θ = (α, ϕ, σv, ρ) from 50 independent
SMC2 runs on the discrete-time stochastic volatility model

We implement 50 independent runs of the SMC2 algorithm and report in Table 3 some summary
statistics on the posterior mean parameter values for θ. The standard deviations as compared to
the corresponding means as reported in the table suggest that the Monte Carlo errors introduced
by SMC are immaterial as far as the typical statistical inference is concerned.

In Figure 9, we plot the prior and posterior densities for each of the four parameters in (α, ϕ, σv, ρ).
The difference between the two densities is evident in all cases, suggesting that the data has
helped in pinning down the parameter values. Worth pointing out is the fact that with the
same prior distributions, the SMC2 algorithm can run more efficiently if we simply adjust the
initialization sampler away from the prior distributions. This is often possible because typical
empirical studies go through several preliminary test runs on data. The results from each test
run can help shape the initialization sampler but still leave the original prior belief intact.

Naturally, data cloning described earlier plays no role in Bayesian inference because any powering
up in effect amounts to using the same data multiple times and thus renders the posterior
distribution invalid. That explains why we did not apply the data-cloning SMC2 algorithm of
Duan et al. (2020) in the above empirical analysis. k-fold duplication discussed in Section 3.1
can however be utilized to efficiently increase the SMC particle size so as to improve the quality
of Bayesian inference.

Bayesian and frequentist inferences become similar for large sample sizes on the basis of Walker’s
Consistency Theorem (Walker, 1969), which states that the posterior distribution converges to
a multivariate normal distribution with mean equal to the MLE as the sample size increases.
Since Bayesian and frequentist inferences for a large data sample are practically the same due
to the Walker Theorem, the Bayesian computational approach has actually driven the initial
development of data cloning for frequentist analysis (see Lele et al., 2007, Jacquier et al., 2007
and Lele et al., 2010).

6.2 Frequentist approach to inference
When the likelihood function is an optimization target, the MLE or some extreme value estimate
is often the focus of frequentist inference. For example, the likelihood ratio test can be conducted
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Figure 9: Plots of the prior and posterior densities for the parameters (α, ϕ, σv, ρ) from one
SMC2 run on the stochastic volatility model

on the functional values of the MLE with and without the constraint. Beyond the likelihood
ratio test, one typically needs to compute standard errors and/or correlations of the parameters
for other inferences such as the Wald test and Z-test.

The inverse of the Fisher information matrix by the classical statistical theory provides the
asymptotic variance matrix of the MLE, which can in turn be approximated by the negative
of the Hessian of the log-likelihood function evaluated at the MLE (see Stuart et al., 1991).
Typical tests revolve around the Hessian matrix evaluated at the MLE. Since a strong appeal of
SMC optimization is to bypass derivatives, going back to computing derivatives (analytical or
numerical) after optimization seems to be at odds with the very spirit of SMC optimization for
statistical functions.

Moreover, analytical Hessian is often unavailable for statistical models in practice and requires
approximation by, say, calculating a numerical Hessian. For general state-space models where the
likelihood function may need a particle filter to compute, producing numerical derivatives may
not even be possible due to inherent discontinuity of particle filter (see Kantas et al., 2009 and
Kantas et al., 2015). Moreover, inverting a large-dimensional Hessian may also be numerically
unstable, prone to yielding a poor-quality asymptotic variance.

Interestingly, the seminal work of Lele et al. (2007) and Lele et al. (2010) on data cloning

has offered a direct solution to the Hessian computable from the cloned SMC sample. Let θ̂
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denote the MLE and H(θ̂|D) stand for the Hessian of the log-likelihood function. By their
result, the posterior distribution with the cloned data likelihood converges to a multivariate
normal distribution whose mean equals θ̂ and variance is − 1

mH(θ̂|D)−1 as the cloning power
m approaches infinity.16 Thus, the covariance matrix computed from the sufficiently cloned SMC
particles becomes − 1

mH(θ̂|D)−1. Multiplying by m gives rise to −H(θ̂|D)−1, the asymptotic

covariance matrix for θ̂.

To appreciate this intriguing result of Lele et al. (2007) and Lele et al. (2010), we provide
an intuitive derivation.17 The optimality conditions for the MLE ensure that the log-likelihood
function’s gradient equals zero and its Hessian is strictly negative definite. When these and some
additional regularity conditions are met, applying a second-order Taylor expansion gives rise to

log [L(θ|D)mπ0(θ)] = log π0(θ) +m logL(θ|D)

≃ log π0(θ̂) +m logL(θ̂|D) +
m

2
(θ − θ̂)′H(θ̂|D)(θ − θ̂) (19)

for large m because the powered-up target function causes θ to be heavily concentrated in a
small neighborhood of θ̂. It follows that

L(θ|D)mπ0(θ) ≃ π0(θ̂)L(θ̂|D)m exp

− (θ − θ̂)′
(
−mH(θ̂|D)

)
(θ − θ̂)

2


∝ Φ

(
θ; θ̂,− 1

m
H(θ̂|D)−1

)
(20)

In the above, Φ(·;µ,Σ) is the multivariate normal density function with mean vector µ and

covariance matrix Σ. Evidently, π0(θ̂)L(θ̂|D)m on the right-hand side has been absorbed into
the norming constant for normality. In short, data cloning yields the same limiting distribution
for either L(θ|D)mπ0(θ) or L(θ|D)m after factoring in the norming constant because both are
proportional to the same multivariate normal distribution. In short, the prior distribution in the
context of data cloning becomes a moot point.

Regardless of the target function being L(θ|D)mπ0(θ) or L(θ|D)m, the covariance matrix can
be approximated by m times of the sample covariance computed from the cloned SMC particles.
Also interesting to note is the fact that the SMC approach allows for bypassing the inversion of
the Hessian matrix, which near-singularity may become a source of numerical imprecision when
there are many parameters.

When the likelihood function has multiple local maxima all sharing the same maximum functional
value, i.e., the global maximum is not unique, data cloning is not expected to dampen those local
maxima for an obvious reason. In short, data cloning cannot help resolve the fundamental lack
of identifiability. That being said, data cloning may be a powerful tool for resolving estimability
of poorly identified models where (1) the global maximum is unique but is closely followed by
many local maxima of smaller but comparable functional values or (2) the likelihood function is
relatively flat along some dimensions at around the global maximum. In essence, data cloning in
the former case widens the gap between the functional value of the global maximum and those of

16In both Lele et al. (2007) and Lele et al. (2010), the authors stated the convergence to the Fisher information
matrix. More precisely speaking, it is the negative of the Hessian of the log-likelihood function evaluated at the
MLE, which is also known as the observed Fisher information matrix.

17For a rigorous proof, readers are referred to Lele et al. (2010).
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other local maxima. Thus, it truly resolves both estimability and inference for poorly identifiable
models of this type. For the latter, data cloning turns the target function into a much sharper
form at around the global maximum. It helps resolves estimability through increasing precision,
but the sampling errors, as having been discussed above, will still remain large after the variances
being duly scaled back.

Importantly, convergence to normality by data cloning works for any data sample size. This
should not be confused with the MLE’s asymptotic convergence for which the data size must
be large. When the sample size is small, cloning ensures a good approximation of the negative
Hessian at the MLE by the sample covariance matrix derived from the SMC particles. However,
the MLE’s asymptotic convergence to normality will only occur for large sample sizes. One
should be mindful of the fact that the negative Hessian computed with data-cloning SMC or
other methods on a small sample will likely be a poor approximation of the Fisher information
matrix.

Nevertheless, the MLE is often used in practice even for small samples. Technical issues concern-
ing inverting the Hessian matrix occasionally surfaces. It is not uncommon to see a non-invertible
Hessian in applied research possibly due to multicollinearity or small sample size (see Gill and
King, 2004a, Gill and King, 2004b). We now use an example in Gill and King (2004b) to
demonstrate how data-cloning SMC can lend a helping hand.

Standard Logistic Regression Data-cloning SMC
Full Set Minus FED Bounds [-30, 30] Bounds [-45, 45]

Parameter Estimate Estimate Standard Error Estimate Standard Error Estimate Standard Error
BLK 5.8607 5.5808 5.3426 5.8607 5.8162 5.8607 5.7536
LAT 4.0793 3.2140 8.1122 4.0794 8.3173 4.0793 8.4498
GVT -1.5347 -1.5874 1.2481 -1.5347 1.2806 -1.5347 1.2768
SVC -2.9296 -2.5625 1.6965 -2.9296 1.7400 -2.9296 1.8117
FED -26.0561 - - -28.9943 1.5846 ∗ 105 -44.0251 4.4206 ∗ 107
XFR 2.9755 2.3326 1.2965 2.9755 1.4453 2.9755 1.4168
POP -1.4270 -0.8176 0.7232 -1.4270 0.7576 -1.4270 0.7599

Intercept 12.2686 6.4492 6.7366 12.2686 6.8957 12.2686 6.9219
Log-likelihood -13.618618183359 -16.043125180069 -13.618618183309 -13.618618183296

Table 4: Comparison of data-cloning SMC with standard logistic regression on the State of
Florida sample

This data sample is for the State of Florida taken from the 1989 county-level economic and
demographic survey in the US, which has 33 data instances and comprises 7 explanatory variables
and a dichotomous response indicating whether 20% or more of the county’s residents live in
poverty. Gill and King (2004b) showed that logistic regression yields the MLE but encounters
a non-invertible Hessian, making standard errors uncomputable. After omitting FED18, the
variable causing the difficulty, logistic regression can produce a sensible outcome. Gill and King
(2004b) proceeded to offer two solutions while keeping in mind an important applied research
consideration that dictates the use of same model specification for an across-state comparison
study.

Data-cloning SMC enables us to conduct the MLE inference on this data sample and to reveal
an underlying problem in connection to the MLE estimate on FED. Put it simply, the standard
logistic regression software does not handle the situation well. First, we reproduce Gill and King

18FED is a dummy variable indicating whether federally owned lands make up 30 percent or more of a county’s
land area
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(2004b)’s results with the Python package ‘statsmodels’ with its default optimization solver.19

We then place loose bounds on the parameter for FED and run density-tempered SMC with
cloning to produce the results in Table 4.20 As indicated in the table, placing bounds, [-30,
30] or [-45, 45], helps solve the maximization problem and reveals the nature of the optimum.
In short, the objective function slowly approaches its limiting value and the parameter value
corresponding to FED decreases toward negative infinity as it should be for this data sample
before losing numerical precision with the typical coding in float64.21

Importantly, the results indicate that other parameters and their standard errors are not materially
impacted. To re-emphasize a key point, data-cloning SMC can directly generate a quality
estimate for covariance matrix through sampling and avoid inverting the Hessian altogether.
The standard error for the parameter on FED reported in Table 4 is suggestive, pointing to the
fact that the SMC optimizer wants to go further negative in the FED dimension but is stopped
by the bound.22

7 Conclusion
Despite its Bayesian origin, SMC can be a powerful tool for optimization, particularly for problems
that are difficult for conventional methods. We have reviewed the literature by first focusing on
optimization through casting all optimization problems as sampling tasks. SMC is well known
in Bayesian statistics reflective of its origin but has received scant attention as a powerful global
optimizer. Density-tempered SMC in particular can work for different types of objective functions,
be they continuous or discrete, and can handle complex and/or non-convex constraints. We then
proceed to discuss the use of SMC for statistical inference, either Bayesian or frequentist.

This article also discusses how the density-tempered and expanding-data SMC techniques can
complement each other to effectively handle both offline and online optimization/inference tasks.
Since the SMC maximum is equivalent to the maximum order statistic of a sample, the Extreme
Value Theorem is readily applicable to assessing the quality of an SMC optimum. When sensing a
need to improve the Monte Carlo precision, k-fold duplication and data cloning are two effective
and simple techniques that can quickly improve the SMC solution’s quality. Moreover, we have
discussed efficient ways to conduct Bayesian inference and to avoid inverting the Hessian matrix
for frequentist inference, which can sometimes be challenging.

Although we have explained and demonstrated the power of SMC for complex and challenging
optimization tasks, it should not be viewed as a replacement for conventional gradient-based
optimizers because they are highly efficient tools for convex optimization problems. If we were
to use SMC to solve, for example, Lasso, it would be doable but would take several orders of
magnitude more computing time to complete the work. This is because the highly efficient

19The reported values here are in essence same as those in Gill and King (2004b) with differences caused by
the optimization package and default setting.

20Cloning is executed with the power of 4i (i being the cloning round number) and terminated when an
additional cloning round produces the log-likelihood improvement less than 10−8 and all parameter changes are
smaller than 10−2 times their respective absolute parameter values. The SMC standard errors are computed after
applying 64-fold duplication to the sample of 1,000 after cloning.

21FED is a dummy variable with the value of 1 occurs only in three cases and all their responses are 0.
Naturally, the logistic regression’s optimal coefficient goes to negative infinity to gain a better fit.

22Strictly speaking, Equation (19) is not directly applicable to the parameter for FED because its first derivative
is not zero at the SMC solution. However, it has long reached the flat part in the vicinity of the lower bound to
have a near-zero derivative.

31



proximal gradient ascent/descent method will typically obtain the Lasso solution in a fraction of
a second.

SMC does not belong to the category of meta-heuristic methods but can be applied in a heuristic
way much like the stochastic gradient ascent/descent algorithm has become the standard op-
timization tool for finding neural network solutions. Neural networks are obviously non-convex
with respect to parameters (i.e., synaptic weights and biases). They are in fact full of local
optima and saddle points. However, that has not prevented the usage of stochastic gradient as-
cent/descent method to heuristically solve neural-network models. For users who are not fixated
on getting the true optimum, we see the potential of deploying SMC to prune those typically
over-parameterized neural-network models while preserving their prediction accuracy.
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