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INTRODUCTION

A
credit default swap (CDS)
is a financial contract that
works much like typical insur-

ance. The contract defines a refer-
ence instrument (a bond) issued by
some reference entity (the obligor).
The buyer of a CDS pays periodic
premiums in exchange for protection
against potential losses incurred on the
reference instrument when the obligor
defaults. Buyers may or may not hold
the reference instrument because CDS
are often used as a cross hedge for
credit exposures arising from other
business dealings with the obligor;
for example, a supply chain relation-
ship. Of course, CDS can also be
used for speculative purposes just like
other financial instruments. CDS were
invented in the 1990s and steadily
gained popularity to reach a peak
in 2007 with over 60 trillion USD
notional outstanding. The onset of the
global financial crisis in 2008 put a
dent in its popularity, and CDS were
blamed as a main contributor to the

global financial crisis. Even so, CDS
are still a multi-trillion market these
days because they play a vital risk
management function.

In earlier years of CDS trading,
the spread was generally set without
involving an upfront fee. We will refer
to such a spread as CDS par spread.
Since the introduction of the CDS Big
Bang Protocol in April 2009, CDS
have been traded with a fixed coupon
at either 100 or 500 basis points with
an upfront fee to offset the mispricing
caused by the fixed coupon rate. Obvi-
ously, this change makes secondary
market trading of CDS easier, because
the upfront fee can freely move with
market conditions and clear offset-
ting trades without having to pile new
CDS on existing CDS.Afixed-coupon
CDS with an upfront fee can be eas-
ily quoted as a CDS par spread. In
this paper, we will stick to the CDS
par spread in expressing the price of a
CDS much like using effective yield
instead of coupon rate to quote the
cost/return of a bond.
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When probabilities of default (PDs) exhibit a term
structure behavior, CDS spreads become some com-
plex aggregate of the PDs over the segment of the
term structure defined by the tenor of CDS. For a 5-
year CDS, one should note that the CDS spread may
not be closely aligned with the 5-year PD (annualized)
because CDS premiums are only payable up to the
time of default. Since the maximum loss given default
is 100% and the highest possible PD is also 100%, one
would think that the CDS spread should be capped at
10,000 basis points. But Greek sovereign CDS were
actually traded at a spread beyond 20,000 basis points
prior to its default in the early part of 2012. This is
because with Greece’s imminent default, the protec-
tion buyer was only expected to pay a fraction of the
premium determined by a short accrual period, but the
protection seller was expected to soon incur a big loss
whose amount was not tied to the accrual period. Push-
ing up the CDS premium beyond 20,000 basis points
was to offset the likely short accrual period.

Instead of focusing on PDs over various periods
extending out from the point of prediction, one can con-
sider forward PDs (a fixed duration, say, one month,
but with different forward starting times). Forward PDs
work much like forward interest rates. Due to their
contractual features, CDS spreads are expected to be
more in line with short-term (long-term) forward PD
when shorter-term forward PDs are higher (lower) than
longer-term forward PDs. This is because an imminent
default suggests high shorter-term forward PDs being
coupled with lower longer-term forward PDs. As in
the preceding discussion on the Greek default, CDS
spreads will have to be high enough to reflect a shorter
accrual period due to the imminent default.

The complexity of having to use the term struc-
ture of forward PDs to analyze CDS spreads highlights
the need for a simpler summary measure. Indeed, that
is precisely the objective of this paper. We envisage
a CDS premium rate that would have been charged
if market participants were risk-neutral and no money
changed hands initially. In short, it is equivalent to
pricing CDS purely based on their actuarial values.
Such a premium rate is referred to as an actuarial par
spread and can be computed with availability of the
term structure of physical PDs. We show by a numer-
ical example the mechanics of its computation and

explain how it can be operationalized on a daily and
live basis by leveraging the corporate default prediction
system developed and maintained by the Risk Man-
agement Institute (RMI) of the National University of
Singapore.

As an example to demonstrate this new measure,
this paper will look at Eastman Kodak, which filed for
Chapter 11 bankruptcy protection on January 19, 2012.
Kodak later emerged from bankruptcy on September
3, 2013, and its stocks under a different ticker began to
trade in NYSE on November 1, 2013. We use the actu-
arial par spread to study the CDS spreads of Kodak over
the one-year period leading to the day of its bankruptcy
filing. The results suggest that the log-ratio of CDS
spread over its corresponding actuarial par spread is
highly predictable with its lagged value, and this pre-
dictive relationship can form a good basis for empirical
pricing of CDS.

I. TERM STRUCTURE OF
PHYSICAL PDs AND
ACTUARIAL PAR
SPREADS

A CDS contract comprises the premium and protection
legs. The protection buyer typically pays premiums
on a quarterly basis to the seller, which are calculated
based on the fixed spread until the reference entity
defaults. In exchange, the protection buyer receives a
contingent lump sum payment at the default time of
the reference entity, and the settlement amount is by
convention based on the recovery rate on the reference
instrument determined at the credit event auction held
specifically for the defaulted obligor within one month
of default. Consider at time t a CDS contract to be ter-
minated at time T > t. The premium leg comes with
periodic future payments at {t1, t2, . . . , tk} with tk = T .
The payment date at or immediately before t is denoted
by t0. The protection leg pays an amount set according
to one minus a random recovery rate, Rτ at the ran-
dom default time τ > t if default occurs before T , at
which time all scheduled premium payments beyond
the default time cease to apply.

CDS premiums are subject to day count con-
ventions similar to coupon bonds. Adding to the
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complexity is the fact that accrual periods do not
always end on payment dates. Differences are typi-
cally one day, and may be ignored for many practical
purposes. For a more precise modeling of CDS, how-
ever, we introduce a set of accrual period end dates,
{t′1, t′2, . . . , t′k}. Let A(ti−1, t

′
i) stand for the length of

an accrual period measured as the fraction of a year
using the appropriate day count convention. For a typ-
ical CDS and if a particular quarterly accrual period
from ti−1 to t′i inclusive has, say, 91 calendar days,
the actual/360 day count convention will give rise to
A(ti−1, t

′
i) = 91/360, a factor that determines the frac-

tion of the annualized spread applicable to this partic-
ular quarter.

Let Dt(T − t) denote the appropriate money mar-
ket discount factor starting from time t to some future
date T . This discount factor is typically random. To
deal with randomness in discount factor, default and
recovery rate, we adopt the familiar derivatives pric-
ing theory with which there exists a risk-neutral pric-
ing measure, and derivatives can be priced by taking
expectation of its contingent payment with respect to
the risk-neutral pricing measure as if economic agents
were not risk adverse. We denote such a risk-neutral
expectation operator at time t by EQt (·) to reflect the
time-t information set.

I.1. CDS Par Spread and Actuarial
Par Spread

The CDS par spread, St(T − t), is known to satisfy
the following condition, which reflects the fact that no
money has changed hands initially between the protec-
tion buyer and seller.1

E
Q
t [(1 − Rτ)Dt(τ − t)1{t<τ≤t′

k
}]

= St(T − t)

k∑
i=1

{A(ti−1 ∨ t, t′i)

×EQt [Dt(ti − t)1{t′i<τ}]
+EQt [A(ti−1 ∨ t, τ)Dt(τ − t)1{t′i−1<τ≤t′i}]},

(1)

where ti−1 ∨ t denotes the maximum of ti−1 and t so
that the partial accrual for the first payment period, i.e.,
from t0 to t, is taken out. Note that the left-hand side is

the present value of the payment for the protection leg
up to and including the final accrual end date, whereas
the right-hand side is the present value of the payments
for the premium leg with the amount determined by
the CDS par spread that is known when the contract is
entered. One needs to note that for all pre-scheduled
payments, we have used the payment date, ti, for dis-
counting and the accrual end date, t′i, for computing
probability to reflect the actual default protection cov-
erage period. Also implicit in the above equation is the
assumption that at default, the payments for both pre-
mium and protection legs are made immediately. Any
delay in payment can in effect be incorporated into the
recovery rate.

Equation (1) can be used to state the CDS par spread
as:

St(T − t)

=
E
Q
t

[
(1 − Rτ)Dt(τ − t)1{t<τ≤t′

k
}
]

∑k
i=1

{
A(ti−1 ∨ t, t′i)EQt

[
Dt(ti − t)1{t′i<τ}

]
+ E

Q
t

[
A(ti−1 ∨ t, τ)Dt(τ − t)1{t′i−1<τ≤t′i}

]}
.

(2)

Let rt(s, q) be the time-t risk-free forward discount rate
starting at time t + s with a duration of q − s, where
q ≥ s. The standard term structure theory implies that
rt(0, T − t) = − 1

T−t ln(EQt [Dt(T − t)]). If we further
assume that Rτ , τ and Dt(ti − t) (for all i’s) are all
independent and let R̄t = E

Q
t (Rτ), then

St(T − t)

= (1−R̄t )EQt
[
e−rt (0,τ−t)(τ−t)1{t<τ≤t′

k
}
]

∑k
i=1

{
A(ti−1 ∨ t, t′i)e−rt (0,ti−t)(ti−t)EQt

[
1{t′i<τ}

]

+ E
Q
t

[
A(ti−1 ∨ t, τ)e−rt (0,τ−t)(τ−t)1{t′i−1<τ≤t′i}

]}
.

(3)

Now we are in a position to define the actuarial
par spread, denoted by S(a)t (T − t), which is the par
spread computed by replacing the risk-neutral probabil-
ity measureQwith the physical probability measureP .
In other words, the actuarial par spread would become
the CDS par spread when economic agents were truly
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risk-neutral and valuation were conducted purely on an
actuarial basis. That is to mean

S
(a)
t (T − t)

= (1−R̄t )EPt
[
e−rt (0,τ−t)(τ−t)1{t<τ≤t′

k
}
]

∑k
i=1

{
A(ti−1 ∨ t, t′i)e−rt (0,ti−t)(ti−t)EPt

[
1{t′i<τ}

]

+ EPt

[
A(ti−1 ∨ t, τ)e−rt (0,τ−t)(τ−t)1{t′i−1<τ≤t′i}

]}
.

(4)

I.2. Term Structure of Physical PDs

In order to compute the actuarial spread, we need a
model for term structure of PDs with respect to the
physical probability law that governs occurrences of
default. Like interest rates, term structure of PDs can
be stated in terms of spot or forward PDs. Here, we
adopt the forward intensity approach of Duan et al.
(2012) to characterize term structure of PDs. Before
proceeding further, it is important to note that a cor-
porate exit can be caused by default/bankruptcy or
simply merger/aquisition. However, exits for reasons
other than default/bankruptcy are in the literature typ-
ically left un-modeled except for a few papers like
Duffie et al. (2007), Duan et al. (2012) and Duan and
Fulop (2013). The resulting censoring bias of course
depends on the occurrence rate of other exits. Based
on Table 1 of Duan et al. (2012) which documents
defaults/bankruptcies and other types of firm exit for
the US exchange-listed firms over 1991 to 2011, the
censoring bias is likely significant; for example in 2007,
0.5% of the firms defaulted whereas 9.34% of them
exited for other reasons.

This huge gap implies that ignoring other exits
in default models could grossly inflate the predicted
default probability, because it is the only factor for
tuning both survival and default occurrences. Suppose
p is the default probability for one period and the
default rate is time homogeneous. Depending on how
the data sample is treated, the consequences may differ.
If the firms due to other exits are left out of the sample,
p will be overestimated simply because the sample
shows an upward biased default rate. If those firms are
kept in the sample and treated as survived ones, p will
be correctly estimated. Even if p is estimated properly,

there will be distorted consequences in applications;
for example, the probability of a firm defaulting in
two periods will be erroneously calculated as p+ (1 −
p)p, but the correct PD should be lower because the
right formula is p + (1 − p − q)p with q being the
probability of other exits over one period. In the case of
CDS, other exit does not mean termination because the
successor entity will be assigned to replace the refer-
ence entity. Naturally, the relevant default probability
must factor in the default probability of the successor;
for example, qp∗ should be added to p+ (1 −p− q)p
with p∗ denoting the successor’s default probability
over the second period.

Envision a continuous-time setting where corpo-
rate obligors evolve dynamically with their individual
attributes changing along with macroeconomic factors.
Some obligors default, some exit for other reasons, but
the rest survive. The occurrence of default and that of
other exits for each obligor are governed by two Pois-
son processes that are independent when conditioning
on their Poisson intensities. But these two intensities
are correlated because they are functions of some com-
mon variables (obligor’s attributes and macroeconomic
factors).Across obligors, the default and other-exit pro-
cesses are also independent once being conditioned on
their Poisson intensities. Such processes are known as
the Cox doubly stochastic processes, which serve as
the modeling foundation for Duffie et al. (2007), Duan
et al. (2012) and many others. The departing point for
Duan et al. (2012) is the use of forward Poisson inten-
sities to model the occurrence of default or other exits.
Here, we simply apply the results directly and refer
readers to Duan et al. (2012) for more technical details.

Let ft(s) and ht(s) be, respectively, the time-t for-
ward default and other-exit intensities with the forward

starting time of t+ s. Define ψt(s, q) =
∫ q
s [ft(u)+ht(u)]du

q−s
for s ≤ q, which is in a way much like the stan-
dardized time-t forward interest rate starting at time
t + s with a duration of q − s. Recall our ear-
lier definition for forward interest rates, rt(s, q). Note
that the instantaneous forward interest rate starting
at time t + s can be expressed as rt(s, s), and it
can be related to forward rates with longer durations

by rt(s, q) =
∫ q
s rt (u,u)du

q−s . In a pure sense of corpo-

rate default, the default probability over [t, t′i] should
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equal
∫ t′i−t

0 e−ψt(0,u)uft(u)du and the discounted default

probability would be
∫ t′i−t

0 e−[rt (0,u)+ψt(0,u)]uft(u)du.

However, they are not the right default and discounted
default probabilities for CDS, because substitution typ-
ically takes place when the reference entity is merged
with or acquired by another corporate entity. In that
case, the CDS protection is typically shifted to the
merged or acquiring entity, and the successor entity will
then face subsequent default or other exit. Therefore,
one must be careful in applying a suitable treatment.

Let Pt(s, q; rt(0, u), s ≤ u ≤ q) denote the time-t
discounted forward probability of the reference entity
of the CDS being terminated, including successions,
over the period [t + s, t + q], where 0 ≤ s≤ q. This
termination probability is meant to capture an intri-
cate sequence of potential defaults by the original
reference entity and its successors. This probabil-
ity ultimately determines the likelihood of the CDS
seller having to make a default payment. Similarly,
P∗
t (s, q; rt(0, u), s≤ u≤ q) stands for the termination

probability of the successor. When there is no ambigu-
ity, we will simply express these discounted forward
termination probabilities asPt(s, q) andP∗

t (s, q). What
we mean by discounted probability is the integration
of the forward probability rate at, say, time t + u (with
s ≤ u ≤ q) being discounted by the time-t forward
risk-free rate from time t+ s to time t+ u. The related
quantities for the successor are similarly denoted by
f ∗
t (s),h

∗
t (s) andψ∗

t (s, q). Let 1{Sub} be an indicator with
1 for the CDS contract that is subject to substitution
and 0 otherwise.

The succession entity of course cannot be deter-
mined beforehand. Therefore, some reasonable rules
will be needed for implementation. One can, for exam-
ple, assume the successor to be an entity that shares
the same forward termination probability as the refer-
ence obligor, or an entity that is of median quality. In
principle, succession may occur multiple times, which
in turn requires us to make a further assumption on
all subsequent substitutions. For analytical tractability,
our maintained assumption is that the successor’s for-
ward termination probability may differ from that of
the original reference entity, but all successors must be
of the same type in terms of the forward termination
probability. We show in Appendix A that the solution

to the CDS discounted forward termination probability
with or without substitution for 0 ≤ s ≤ q can be
expressed as

Pt(s, q) =
∫ q

s

e−[rt (s,u)+ψt(s,u)](u−s)ft(u)du

+
∫ q

s

e−[rt (s,u)+ψt(s,u)](u−s)ht(u)

× [
1{Sub}P∗

t (u, q)+ 1 − 1{Sub}
]
du, (5)

where

P∗
t (s, q) =

∫ q

s

e−
∫ v
s [rt (u,u)+f ∗

t (u)]duf ∗
t (v)dv. (6)

In general, formulas in (5) and (6) can be used
repeatedly to compute the following quantity in the
first term of the denominator of Eq. (4) by temporarily
setting forward interest rates to zero:

EPt
(
1{t′i<τ}

) = 1 − Pt(0, t
′
i − t; rt(0, u) = 0

for 0 ≤ u ≤ t′i − t). (7)

When the substitution feature is disabled as in Case 2
of Appendix B, the above quantity naturally reduces
to exp[−ψt(0, t′i − t)(t′i − t)], a standard result for the
probability of surviving default and other exits over the
period [t, t′i].

The solutions to the two remaining terms in Eq. (4)
again depend on P∗

t (s, q) in Eq. (6). They can be
expressed as

EPt

[
e−rt (0,τ−t)(τ−t)1{t<τ≤t′

k
}
]

=
∫ t′

k
−t

0
e−[rt (0,s)+ψt(0,s)]sft(s)ds

+
∫ t′

k
−t

0
e−[rt (0,s)+ψt(0,s)]sht(s)1{Sub}

×P∗
t (s, t

′
k − t)ds (8)

and

EPt

[
A(ti−1 ∨ t, τ)e−rt (0,τ−t)(τ−t)1{t′i−1<τ≤t′i}

]

=
∫ t′i

t′i−1∨t
A(ti−1 ∨ t, s)e−[rt (0,s−t)+ψt(0,s−t)](s−t)

× ft(s− t)ds

GLOBAL CREDIT REVIEW VOLUME 4 55



June 25, 2014 14:15 1450003

+
∫ t′i

t′i−1∨t
A(ti−1 ∨ t, s)e−[rt (0,s−t)+ψt(0,s−t)](s−t)

×ht(s− t)1{Sub}P∗
t (s− t, t′i − t)ds.

(9)

Note that forward interest rate, rt(s, u), used in Eqs. (5)
and (6) can always be deduced from the spot interest
rate curve.

In Appendix B, we provide the specific solutions
for two special cases of interest. One of which (with
substitution and its successors sharing the same for-
ward intensities as the original obligor) will be used
for the numerical example and empirical study later
because substitution is a built-in feature of standard
CDS contracts.2

The actuarial par spread formula can be readily
computed daily by leveraging the Credit Research Ini-
tiative (CRI) infrastructure created and maintained by
the Risk Management Institute (RMI) of the National
University of Singapore since July 2010. The RMI-CRI
system has implemented the forward intensity model
of Duan et al. (2012). It currently makes available
and allows free access by all legitimate users to daily
updated PDs ranging from one month to five years for
over 60,000 exchange-listed firms in 106 economies
around the world. The forward intensity functions used
to generate the RMI-CRI PDs are exponential lin-
ear functions of some input variables (2 macroeco-
nomic factors and 10 firm-specific attributes) where
the coefficients depend on the forward starting time,
and are subject to the Nelson–Siegel type of smooth
term structure restriction. Estimation of the parameters
and statistical inference for the constrained system rely
on the pseudo-Bayesian sequential Monte Carlo tech-
nique and self-normalized statistics devised in Duan
and Fulop (2013). For details on the specific RMI-CRI
implementation, please refer to RMI-CRI Technical
Report (2013). The RMI-CRI model’s parameters are
re-calibrated monthly and the inputs to the functions
are updated daily.

II. A NUMERICAL EXAMPLE
We will compute a 5-year actuarial par spread by
daily discretization and the convention of quarterly

payments subject to the actual/360 day count. Thus,
all integrals above are just some simple sums with the
term, ds, being approximated by 1/365. A(ti−1 ∨ t, t′i)
in the formula is simply the fraction of a year defined
by the actual number of days in an accrual period (a
quarter or shorter) over 360, which reflects the CDS
day count convention. It should be noted that for all
accrual periods, A(ti−1 ∨ t, t′i) or A(ti−1 ∨ t, τ), should
be inclusive of the start and end dates.

For the numerical example and the empirical anal-
ysis later, we assume that the successor to replace the
reference entity has the same discounted forward ter-
mination probability, i.e., P∗

t (s, T − t) = Pt(s, T − t)

for 0 ≤ s ≤ T − t. The relevant formulas are given
in Case 1 of Appendix B. Now, we are in a position to
show how to compute the actuarial par spread using the
5-year CDS referencing Eastman Kodak on November
16, 2011. Note that Eastman Kodak filed for Chapter 11
bankruptcy protection on January 19, 2012. The CDS
traded at 4,009.84 basis points (bps) on November 16,
2011. Our calculation later shows that the actuarial par
spread is estimated to be only 422.66 bps based on the
standard recovery rate of 40%. Assuming that the term
structure of PDs and the recovery assumption used in
our analysis are reasonably accurate, the huge gap of
3,587.17 bps could only be attributed to a combination
of very high risk aversion, very low market liquidity
(extremely tight supply condition) and an overestima-
tion by the market of the PDs. It is also possible that
the huge gap is due to an underestimation of the PDs
by the physical default prediction model and/or using
an overstated recovery rate.

The typical assumption of a 40% recovery rate may
indeed be too optimistic, leading to an understated actu-
arial par spread.3 But even using the extreme case of
zero recovery, the actuarial par spread would still be
just around 700 bps. The point of this discussion is not
about whether a particular estimate is correct or not;
rather the actuarial par spread can be a useful device
for decomposing the observed CDS spread so as to
help us gain better understanding of the CDS market
behavior.

The 5-year CDS traded on November 16, 2011
has its maturity on December 20, 2016 and poten-
tially up to 21 quarterly premium payments on 20th
of March/June/September/December if the 20th is a
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business day and otherwise the first business day after
that 20th.4 For the last payment date, however, the
adjustment is capped at 20th plus at most two calen-
dar days. Since December 20, 2016 is a business day,
no adjustment is needed. The first premium payment
date is the closest coupon payment date after the trade
date plus one day, and in this case the first payment
date is December 20, 2011. Reported in Table 1 are
the actual payment dates (after adjusting the official
payment dates) for this CDS. These dates of course
determine the applicable length of time and discount
rate for the discounting purpose. However, they differ
from the accrual end dates by one calendar day except
for the final payment date.

The accrual period for the first payment starts on
September 20, 2011, which is the closest standard
quarterly payment date prior to the first payment date of
this 5-year CDS. Subsequent accrual periods are spaced

Table 1. The 5-year CDS payment dates, accrual periods,
and number of days in each period for the trade date of
November 16, 2011.

Accrual Accrual
Payment Start Date End Date

Payment # Date (inclusive) (inclusive) # of Days

1 20.12.2011 20.09.2011 19.12.2011 33a

2 20.03.2012 20.12.2011 19.03.2012 91
3 20.06.2012 20.03.2012 19.06.2012 92
4 20.09.2012 20.06.2012 19.09.2012 92
5 20.12.2012 20.09.2012 19.12.2012 91
6 20.03.2013 20.12.2012 19.03.2013 90
7 20.06.2013 20.03.2013 19.06.2013 92
8 20.09.2013 20.06.2013 19.09.2013 92
9 20.12.2013 20.09.2013 19.12.2013 91

10 20.03.2014 20.12.2013 19.03.2014 90
11 20.06.2014 20.03.2014 19.06.2014 92
12 22.09.2014 20.06.2014 21.09.2014 94
13 22.12.2014 22.09.2014 21.12.2014 91
14 20.03.2015 22.12.2014 19.03.2015 88
15 22.06.2015 20.03.2015 21.06.2015 94
16 21.09.2015 22.06.2015 20.09.2015 91
17 21.12.2015 21.09.2015 20.12.2015 91
18 21.03.2016 21.12.2015 20.03.2016 91
19 20.06.2016 21.03.2016 19.06.2016 91
20 20.09.2016 20.06.2016 19.09.2016 92
21 20.12.2016 20.09.2016 20.12.2016 92

Note: aThis value reflects the number of days in the first accrual period
that is applicable to this CDS contract, i.e., from November 17, 2011 (trade
date plus one day) to December 19, 2011 inclusive.

according to the official payment dates with the accrual
period ending one calendar day prior to the payment
date except for the last payment period which actu-
ally ends on the official maturity date. Naturally, these
accrual periods are not exactly identical in the num-
ber of calendar days, and the number of days will have
to be computed according to the business day calen-
dar. For this particular 5-year CDS, the accrual period
and the number of calendar days in each period are
given in Table 1. The number of days as reported in
Table 1 for each period divided by 360 should be used
forA(ti−1∨t, t′i) in Eq. (4). ForA(ti−1∨t, τ) in the same
equation, it is the actual number of days elapsed (inclu-
sive of the default day) and then divided by 360; for
example, default on January 19, 2012 means an accrual
period of 41 days (from December 20, 2011 to January
19, 2012 inclusive).

As mentioned in the preceding section, daily
updated PD term structures for nearly all exchange-
listed firms around the world are currently provided by
RMI. We extract Eastman Kodak’s PD term structure
on November 16, 2011. RMI computes all PDs using
data obtained after each market close. Data prepara-
tion and computation take several hours and the PDs
become publicly available on the next calendar day. For
a small set of firms, however, the PDs can be computed
on a real time basis with access to, say, a Bloomberg
terminal. Our use of the PD information on the trade
date is actually operationally feasible.

There are two sets of forward intensity functions at
time t (i.e., November 16th), ft(s) for default and ht(s)
for other exits where s stands for forward starting time
from t. The set of prediction variables (covariates) used
by RMI for both default and other exits comprises, as of
the time of this writing, 12 variables (2 macro-financial
and 10 firm-specific) and their values are based on the
most current and publicly available information. In our
case, it is at the market close of November 16, 2011.
The variables and their values on November 16, 2011
for Eastman Kodak are provided in Table 2, which are
based on the March 2014 calibration by RMI.

The forward intensity functions implemented by
RMI-CRI are in the following form:

ft(s) = exp
{
α0(s)+ α1(s)x1,t

+ · · · + α12(s)x12,t
}
, (10)
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ht(s) = exp
{
β0(s)+ β1(s)x1,t

+ · · · + β12(s)x12,t
}
. (11)

The coefficients as functions of forward starting time
are constrained by the Nelson–Siegel function of four
or three parameters, depending on whether the covari-
ate is stochastic or not. For the coefficients in the default
intensity function, the RMI-CRI system, as of the time
of this writing, imposes

αi(s; �i,0, �i,1, �i,2, di)

= �i,0 + �i,1
1 − exp(−s/di)

s/di

+ �i,2
[

1 − exp(−s/di)
s/di

− exp(−s/di)
]

for i = 0, 1, 2, . . . , 12 and �i,0 = 0

for i = 1, 2, . . . , 12.

(12)

Similar constraints are placed on the coefficients of the
other-exit intensity function. The relevant parameter
values needed to obtain the PDs for American firms
with the trade date of November 16, 2011 are given in
Table 3.5

Table 2. The variables (covariates) used in the forward
intensity functions (default and other exits) and their val-
ues on November 16, 2011 extracted from the RMI-CRI
database as of February 28, 2014, which may reflect data
revisions post November 16, 2011. Trend stands for the
current value minus one-year moving average. DTD is
distance to default which is an estimate based on a struc-
tural credit risk model. Please refer to RMI-CRI Technical
Report (2013) for details on this measurement along with
other variables.

Prediction Variable Value

S&P500 Index Return (1 year) 0.0497
3-month US Treasury Rate (demeaned) −3.1928
DTD (Level) −0.0288
DTD (Trend) −0.6534
Cash/Total Assets (Level) 0.2163
Cash/Total Assets (Trend) −0.0369
Net income/Total Assets (Level) −0.0146
Net income/Total Assets (Trend) 0.0035
Relative Size (Level) 0.4176
Relative Size (Trend) −0.6963
Market/Book 1.3303
Sigma 0.3236

The parameter values in Table 3 allow us to com-
pute, for example, the probability of not defaulting
before the first premium payment date of December 20,
2011. Daily discretization is employed, which means
�s = 1/365. This discretization matches well with
the operational reality of counting days. The integral in
Eq. (B.1) thus becomes a sum of 33 terms correspond-
ing to 33 calendar days between November 16, 2011
and December 19, 2011. By Eq. (B.2), we have

EP11/16/2011

(
1{12/19/2011<τ}

)
= 1 − P11/16/2011(0, 33�s)

= 1 −�s

32∑
i=0

f11/16/2011(i�s)

× exp


−�s

i∑
j=0

f11/16/2011(j�s)


.

The values for the forward intensities in the above
expression can be computed with Eqs. (10)–(12) and
the values in Tables 2 and 3.

Several quantities in Eq. (4) for the actuarial par
spread need an appropriate interest rate term structure.
The standard practice in pricing CDS is to use the inter-
est rate term structure extracted from a combination of
LIBOR rates and Swap rates by a bootstrap technique.
The missing rates are set by linearly interpolating the
available interest rates (in continuously compounded
form). Readers can refer to Markit (2013) for details
of constructing such a term structure. Table 4 provides
the LIBOR and Swap rates on November 16, 2011
that were retrieved from Bloomberg.6 Since daily dis-
cretization is used, we have to compute the discount
rates for maturities ranging from one calendar day
(November 17, 2011) to 1861 calendar days (December
20, 2016) with daily increments. The one-day contin-
uously compounded rate by applying the LIBOR day
count convention turns out to be 0.1416% whereas the
1861-day continuously compounded rate is 1.3441%.
With the term structure of interest rates in place, one
can proceed to compute forward interest rates (different
forward starting times but always with one-day dura-
tion) needed in the formulas.

Other formulas needed to compute the actuarial
par spread are in Eqs. (B.3) and (B.4). With the term
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Table 3. The parameter values used to determine the forward intensity functions for the listed American firms
for the trade date of November 16, 2011.

Variable # �i,0 �i,1 �i,2 di

Default Intensity Function

Intercept −4.8004 1.2312 3.8558 0.6316
S&P500 Index Return (1 year) 0 −0.0538 90.3545 88.2970
3-month US Treasury Rate (demeaned) 0 −7.5111 47.1087 0.9615
DTD (Level) 0 −1.2931 −0.0168 0.8524
DTD (Trend) 0 −1.0767 −0.0106 0.9322
Cash/Total Assets (Level) 0 −0.9887 0.9456 0.5911
Cash/Total Assets (Trend) 0 −2.1815 0.3087 2.8732
Net income/Total Assets (Level) 0 −4.2162 −10.9831 7.7829
Net income/Total Assets (Trend) 0 −1.1745 0.2412 8.1014
Relative Size (Level) 0 −0.0288 0.2506 0.5198
Relative Size (Trend) 0 −1.7689 2.5739 1.9547
Market/Book 0 −0.0424 0.0679 0.6598
Sigma 0 −0.1883 −137.2612 2570.6303

Other-Exit Intensity Function

Intercept −2.4898 −0.6837 0.5232 1.1805
S&P500 Index Return (1 year) 0 −0.1455 2.4191 0.8112
3-month US Treasury Rate (demeaned) 0 0.8581 5.4323 1.3832
DTD (Level) 0 0.0214 −0.2274 1.9629
DTD (Trend) 0 0.2734 −0.4832 0.3040
Cash/Total Assets (Level) 0 −0.3705 1.5446 1.4461
Cash/Total Assets (Trend) 0 −0.6143 0.9736 6.5312
Net income/Total Assets (Level) 0 −3.9779 5.3066 5.2265
Net income/Total Assets (Trend) 0 −2.3135 0.0711 0.4868
Relative Size (Level) 0 −0.1781 −0.1221 4.3556
Relative Size (Trend) 0 −0.5261 1.5800 11.5417
Market/Book 0 −0.0290 0.0722 4.5704
Sigma 0 1.9060 −1.4790 0.9276

Table 4. LIBOR and Swap rates (in %) on
November 16, 2011.

LIBOR Swap

Tenor Rate Tenor Rate

1 D 0.14167 2 Y 0.7590
1 W 0.19189 3 Y 0.8646
2 W 0.21039 4 Y 1.0697
1 M 0.25172 5 Y 1.3180
2 M 0.35706 6 Y 1.5623
3 M 0.47111
4 M 0.54417
5 M 0.60722
6 M 0.67694
7 M 0.73278
8 M 0.78100
9 M 0.83222

10 M 0.88322
11 M 0.93744

1 Y 0.99700

structure of interest rates and the intensity functions
in place, the numerator of Eq. (4) is computed to be
0.1670 and the two terms in the denominator are 3.9204
and 0.0296, respectively. Thus, the actuarial par spread
becomes 0.042266 (or 422.66 bps).

III. EMPIRICAL PRICING OF
CDS VIA DECOMPOSITION

CDS spreads have been used in the literature as an
instrument to understand corporate bond yields; for
example, Longstaff et al. (2005) and Li et al. (2011),
among others. The literature on the theoretical and
empirical pricing of CDS is quite large. Our focus in
this section is to provide an easy-to-implement empiri-
cal pricing tool for CDS through a decomposition with
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the actuarial par spread. Our approach differs substan-
tially from, say, Ericsson et al. (2009) in which CDS is
related to leverage, volatility and interest rate.Although
these are theoretical determinants of CDS price, they
are indirect and incomplete. They are indirect because
although leverage and volatility do affect an obligor’s
default likelihood, they are not as close to it as the
physical default probability. They are also incomplete
because CDS price is expected to be closely tied to
recovery rate and risk aversion.

We use a time series of Eastman Kodak CDS to
demonstrate the idea of our empirical pricing through
decomposition. A year-long time series of daily CDS
spreads, obtained from Bloomberg and exhibited in
Fig. 1, shows a dramatic rise of CDS premiums leading
up to its Chapter 11 bankruptcy filing on January 19,
2012. Of course, this rising pattern is not surprising in
light of Kodak’s subsequent default. In the same fig-
ure, we plot the actuarial par spread over the same time
period. Generally speaking, the two time series move
in tandem although the CDS spread is much larger than
the corresponding actuarial par spread.7 This cursory
evidence points to the possibility of establishing some
empirical relationship between these two quantities.
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Figure 1. One-year daily time series of 5-year CDS spreads (the left axis) and actuarial par spreads (the right axis) for
Eastman Kodak.

In Fig. 2, we plot the log-ratio of the CDS spread
over its corresponding actuarial par spread. As the fig-
ure shows, the log spread ratio hovers around its mean
of 2.0867 with a standard deviation of 0.2968. More-
over, we can compute its skewness and excess kurtosis,
and their values of 0.0953 and −0.2369 seem to suggest
that the log spread ratio is not far from being normally
distributed. A quick way of pricing CDS is to first look
up its actuarial par spread and add on top an amount
that reflects the mean of 2.0867 for the log spread ratio.
The mean log spread ratio is likely to be firm-specific.
For the CDS without a sufficiently long history, one
could use a cross-sectional sample of mean log spread
ratios corresponding to different obligors to come up
with a suitable estimate.

The plot also suggests some degree of autocorrela-
tion, and with autocorrelation one may actually come
up with a workable prediction model for the log spread
ratio. Indeed, our analysis suggests that a simple lagged
regression can yield a high R2 of 85% and give rise to
the following predictive equation:

ln

(
St

S
(a)
t

)
≈ 0.1487 + 0.9296 × ln

(
St−1

S
(a)

t−1

)
. (13)
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Figure 2. Time series of the log-ratio of the 5-year CDS spreads over their corresponding actuarial par spreads for Eastman
Kodak.
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Figure 3. The log-ratio of the 5-year CDS spread over its corresponding actuarial par spread versus the log-ratio being
lagged one trading day.
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In Fig. 3, the visual relationship is clearly reflective
of the above lagged regression. With the exception
of a few scattered points, the log spread ratio seems
to be tightly centered around the regression line. For
pricing CDS, the predicted log spread ratio based on
Eq. (13), instead of the unconditional mean of 2.0867,
can be applied to produce a better estimate of CDS
spread that is in principle much lower in pricing error.
If we were to price the CDS on the trade date of
November 16, 2011 using the actuarial par spread of
422.66 and the average log spread ratio of 2.0867, we
would obtain a predicted CDS spread of 3406.03 bps
(i.e., 422.66 × exp(2.0867)). Alternatively, we could
price this CDS by its predicted log spread ratio of
2.1522 computed with the log spread ratio of 2.1552
on November 15, 2011 (CDS spread = 4228.85 bps
and actuarial par spread = 490.01 bps). Doing so gives
rise to a predicted CDS spread of 3636.56 bps (i.e.,
422.66 × exp(2.1522)). As compared to 3406.03 bps,
this alternative predicted spread is 230.53 bps closer to
the observed CDS spread of 4009.84 bps on November
16, 2011.

In the above example, we considered the CDS pric-
ing at the end of the trade date.Actually, empirical pric-
ing can be performed throughout the day as the relevant
information (stock price, LIBOR curve, etc.) arrives at
the trading desk. While the parameter values of the PD
model remains fixed, the input values to the PD model
change according to the new information. The revised
default and other-exit probabilities then lead to a new
actuarial par spread which in turn yields a new esti-
mate of the CDS spread through the same predicted log
spread ratio.
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NOTES
1 The CDS pricing discussed here is quite standard; see

for example, Hull (2012, Chapter 24). Later when we

compute with survival and default probabilities, we will

depart from the standard model to a more appropriate

one that factors in a corporate obligor’s exit due to rea-

sons other than default (say, merger/acquistion).
2 This case essentially implies that all successors are firms

of the same forward termination probability as that of

the original obligor, which is a sensible assumption

and simplifies the implementation task considerably. It

is sensible because there is no way of predetermin-

ing which firm will end up being the successor several

years before an acquisition. Having a successor with the

same quality on a forward basis as the original obligor

seems to be a good compromise. Operationally speak-

ing, it is more manageable because the calculation can be

completed without referencing the forward termination

probability of another firm.
3 Recovery rates and PDs may also be correlated, which

has been ruled out by an assumption earlier. With a suit-

able conditional recovery rate model, it is possible to

incorporate this correlation into the actuarial par spread

formula.
4 See ISDA (2012).
5 The specific parameter values in Table 3 are taken from

the RMI-CRI March 2014 calibration which used its

database as of February 28, 2014. Thus, the parame-

ter values have naturally reflected some data revisions

post November 16, 2011, and the model calibration

has also used some data that were beyond November

16, 2011.
6 According to the ISDA standard CDS converter specifi-

cation (ISDA, 2009), the interest rate curve used in the

CDS discounting is locked on the trade date minus one

day. Note that the ISDA specification is for the purpose

of quotation conversion. Fixing the discount curve from

a day earlier can avoid confusion arising from different

discount curves in a trading day. Here, we choose to use

the curve on the trade date instead, because it is actu-

ally operationally feasible to use updated information

throughout the trade day for the purpose of CDS pricing.

Typically, the interest curve does not change drastically

over one day, and it will thus make no material differ-

ence for a typical day.
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7 In the final month, i.e., January 2012, Kodak’s actuarial

par spreads have swung widely. In light of the CDS

behavior over the same period, intuition leads one to

question the quality of the physical PDs used to produce

those actuarial par spreads. One possible reason is our

use of extrapolation to produce default and other-exit

probabilities for periods shorter than one month. Since

the RMI-CRI PD model is calibrated to data by predic-

tions ranging from 1 to 60 months, any prediction for a

horizon less than one month must use the extrapolated

parameter values obtained via the functional restric-

tion in Eq. (12). When an obligor approaches default,

shorter-term PDs naturally play a more prominent role

in determining actuarial par spreads. Small random

changes to the input data (such as DTD, size, etc.) over

Kodak’s waning days get magnified through extrapo-

lated model parameters. A potential fix is to run calibra-

tion by incorporting shorter-period predictions to avoid

using extrapolation.

APPENDIX
Appendix A

The discounted forward termination probability for a
CDS reference entity can be written as

Pt(s, q) =
∫ q

s

e−[rt (s,u)+ψt(s,u)](u−s)ft(u)du

+
∫ q

s

e−[rt (s,u)+ψt(s,u)](u−s)ht(u)

× [
1{Sub}P∗

t (u, q)+ 1 − 1{Sub}
]
du.

The first term on the right-hand side is the typical time-t
cumulative discounted forward probability of termina-
tion due to default from time t + s to t + q, whereas
the second term is the one for other-exits over the same
period but modified by the discounted forward termina-
tion probability of the successor entity, if substitution
is in force. This modification reflects default by the
successor after it replaces the reference entity.

To obtain a solution to the forward termination
probability of the successor, we assume that substi-
tution is in force. In addition, the successor and all
its subsequent successors are required to share the
same forward termination probability, but this for-
ward termination probability can differ from that of

the original reference entity. Under these assumptions,
we have

P∗
t (s, q)

=
∫ q

s

e−[rt (s,u)+ψ∗
t (s,u)](u−s)f ∗

t (u)du

+
∫ q

s

e−[rt (s,u)+ψ∗
t (s,u)](u−s)h∗

t (u)P
∗
t (u, q)du.

Taking a partial derivative with respect to s gives rise
to the following linear first-order differential equation:

∂P∗
t (s, q)

∂s

= −f ∗
t (s)+ [rt(s, s)+ f ∗

t (s)+ h∗
t (s)]

×
∫ q

s

e−[rt (s,u)+ψ∗
t (s,u)](u−s)f ∗

t (u)du

−h∗
t (s)P

∗
t (s, q)+ [rt(s, s)+ f ∗

t (s)+ h∗
t (s)]

×
∫ q

s

e−[rt (s,u)+ψ∗
t (s,u)](u−s)h∗

t (u)P
∗
t (u, q)du

= −f ∗
t (s)+ [rt(s, s)+ f ∗

t (s)]P∗
t (s, q).

Recall that rt(s, s) is the time-t instantaneous forward
rate for time t + s. Naturally, this differential equation
must obey the terminal condition: P∗

t (q, q) = 0.
The general solution to this linear first-order differ-

ential equation is

P∗
t (s, q) = e−

∫ q
s [rt (u,u)+f ∗

t (u)]du

×
(∫ q

s

e
∫ q
v [rt (u,u)+f ∗

t (u)]duf ∗
t (v)dv+ C

)
.

By the terminal condition, we have C = 0. Thus,

P∗
t (s, q) = e−

∫ q
s [rt (u,u)+f ∗

t (u)]du

×
∫ q

s

e
∫ q
v [rt (u,u)+f ∗

t (u)]duf ∗
t (v)dv

=
∫ q

s

e−
∫ v
s [rt (u,u)+f ∗

t (u)]duf ∗
t (v)dv.

Appendix B

Case 1. Substitution is in force, i.e., 1{Sub} = 1, and
the successor entity is assumed to always share the
same default and other-exits intensities of the reference
entity, i.e., P∗

t (s, q) = Pt(s, q).

GLOBAL CREDIT REVIEW VOLUME 4 63



June 25, 2014 14:15 1450003

Under the conditions and applying the result in
Appendix A, we obtain

Pt(s, q) =
∫ q

s

e−
∫ v
s [rt (u,u)+ft(u)]duft(v)dv. (B.1)

The relevant formulas for the actuarial par spread are

EPt
(
1{t′i<τ}

) = 1 − Pt(0, t
′
i − t; rt(0, u) = 0

for 0 ≤ u ≤ t′i − t)

(B.2)

and

EPt

[
e−rt (0,τ−t)(τ−t)1{t<τ≤t′

k
}
]

=
∫ t′

k
−t

0
e−[rt (0,s)+ψt(0,s)]sft(s)ds

+
∫ t′

k
−t

0
e−[rt (0,s)+ψt(0,s)]sht(s)Pt(s, t′k − t)ds

= Pt(0, t
′
k − t). (B.3)

The last equality in the above is due to the result in
Appendix A. In numerical evaluations of this paper,
we actually use the first equality so as to be consistent
with the expression below. Daily discretization used in
the numerical evaluation can cause a minor difference
between the first equality and the final expression.

The final quantity of interest is

EPt

[
A(ti−1 ∨ t, τ)e−rt (0,τ−t)(τ−t)1{t′i−1<τ≤t′i}

]

=
∫ t′i

t′i−1∨t
A(ti−1 ∨ t, s)e−[rt (0,s−t)+ψt(0,s−t)](s−t)

× ft(s− t)ds

+
∫ t′i

t′i−1∨t
A(ti−1 ∨ t, s)e−[rt (0,s−t)+ψt(0,s−t)](s−t)

×ht(s− t)Pt(s− t, t′i − t)ds. (B.4)

Note that we cannot removeht(s), the forward intensity
for other exits, from the system in the way like for the
other expression. This is simply due to the presence of
A(ti−1 ∨ t, s), the day-count factor.

Case 2. No substitution takes place, i.e., 1{Sub} = 0,
and the CDS contract terminates when exit for reasons
other than default occurs. In this case,P∗

t (s, q) becomes
irrelevant.

Under the conditions, we obtain

Pt(s, q) = 1 − e−[rt (s,q)+ψt(s,q)](q−s). (B.5)

The relevant formulas for the actuarial par spread are

EPt
(
1{t′i<τ}

) = 1 − Pt(0, t
′
i − t; rt(0, u) = 0

for 0 ≤ u ≤ t′i − t), (B.6)

EPt

[
e−rt (0,τ−t)(τ−t)1{t<τ≤t′

k
}
]

=
∫ t′

k
−t

0
e−[rt (0,s)+ψt(0,s)]sft(s)ds (B.7)

and

EPt

[
A(ti−1 ∨ t, τ)e−rt (0,τ−t)(τ−t)1{t′i−1<τ≤t′i}

]

=
∫ t′i

t′i−1∨t
A(ti−1 ∨ t, s)e−[rt (0,s−t)+ψt(0,s−t)](s−t)

× ft(s− t)ds. (B.8)
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