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Abstract

A beta regression model with point masses at the two ends is proposed for modeling recov-
ery rate distribution that typically exhibits significant occurrences at both 0 and 100% recovery
rates. We implement the model on a sample of 3,827 defaulted debts obtained from Moody’s
Ultimate Recovery Database. Our approach is to first extend the support of the beta distribu-
tion in both directions and then censor the part below 0 (and above 1) to create point masses
at the two ends. In addition to confirming the bimodality in the recovery rate distribution, our
empirical results clearly show that debt attributes known from the issuance time and industry
distress level at the time of default are both significant in predicting recovery rates. Thus,
the information available at the time of default can be effectively utilized to differentiate re-
covery rates of different debt instruments so as to avoid an often misleading application of an
unconditional average recovery rate of, say 40%. A performance study based on an analysis
of in-sample and out-of-sample datasets of equal size shows that our conditional recovery rate
model outperforms four alternative models considered in this study.
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1 Introduction

Credit risk has always been an important concern regardless of whether the obligor is a sovereign,
corporate or a consumer. Its wide ranging impacts were acutely felt during the 2008-09 global
financial crisis and the subsequent Eurozone sovereign debt turmoil. Credit risk arises from the
potential of an obligor’s default, and the probability of default naturally plays a critical role. No
less important is the recovery rate of debt owed by the defaulting obligor. An obligor can have
several debts outstanding at the time of default; for example, a bank revolver and a note of some
maturity. A particular debt can also be collateralized, meaning that some assets of the obligor have
been specifically pledged to service this debt. Debts by the same obligor with varying recovery
rates incur different degrees of damage to the lenders. Recovery rates upon an obligor’s default are
naturally random, because it is impossible to ascertain beforehand the financial resources that an
obligor can employ to service its debt obligations at the time of default. For credit instruments’
pricing and/or managing credit portfolios, one therefore cannot do without a suitable recovery rate
model reflecting individual debt attributes and market conditions at the time of default.

Recovery rate modeling has been made more critical and pressing by the Basel Capital Accords
as well as the accounting profession’s efforts to properly account for credit risk in financial reporting
post the 2008 global financial crisis. In the case of the Basel Accords, banks adopting the advanced
internal-rating-based approach are permitted to apply their own data-substantiated recovery rate
models instead of using the Basel Committee’s simplified recovery assumption. For financial re-
porting, the International Financial Standards Board has issued IFRS 9 which is scheduled to take
effect in January 2018, and the Financial Accounting Standards Board, the US equivalent, has also
issued a similar reporting standard known as CECL, which is expected to be in force later.

Individual debt attributes should help differentiate recovery rate distributions of different debts;
for example, a collateralized debt is most likely to recover more than a non-collateralized debt issued
by the same obligor. Altman and Kishore (1996) and Jankowitsch, et al (2014), for example,
documented that seniority of debt makes an expected difference and debts of the same seniority
issued by different industries face different recovery rates. It is also natural to include the degree of
distress of the industry to which the defaulting obligor belongs, because the assets of the defaulting
obligor will be subjected to market valuation then. This point was recognized in the literature
such as Acharya, et al (2007). Our objective is to develop a flexible and yet practical recovery rate
model for corporates by linking recovery rates to the debt attributes known from the start along
with the industry distress variable at the time of default. We propose a conditional recovery rate
model that in essence characterizes the loss given default distribution at the time of default, an
essential component of credit risk analysis which becomes even more critical in the era of the Basel
banking regulations for capital adequacy.

Our recovery rates and five associated debt attributes are obtained from Moody’s Ultimate
Recovery Database for 3,827 defaulted debts spanning 1990-2012. For the industry distress variable,
we use the industry median one-month probability of default at the time of default provided by
the Credit Research Initiative database at National University of Singapore. Schuermann (2004)
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observed that recovery distributions tend to be bimodal being either very high or low. Our data
sample is in agreement with this observation with over 30% of the recovery rates at 1 and close
to 7% at 0, higher than the occurrence frequency at any other recovery rate. Obviously, this
bimodality implies that the typical use of a 40% average recovery rate in the literature or some
industry practices can be very misleading. More importantly, this bimodality suggests a need to
use a conditional recovery rate distribution to reflect individual debt attributes and their varying
industry’s market conditions at the time of default. Simply put, the bimodality is likely a result
of mixing different types of defaulted debts in the sample, which is an unconditional as opposed to
conditional recovery rate distribution.

The proposed conditional recovery rate model is a type of beta regression model where the
support of the beta distribution is extended in both directions so that the part below 0 or above 1
can be censored to create probability mass for the recovery rate of 0 or 1. The two shape parameters
are determined by positive link functions to reflect debt attributes and the market condition at the
time of default, and as a result the recovery rate distribution becomes debt specific and default
time sensitive. This modeling approach is new and can be estimated by maximizing likelihood. We
show that it performs better than the alternative models available in the literature. The alternative
models compared to are (1) a censored gamma model of Sigrist and Stahel (2012) and Yashkir and
Yashkir (2013), (2) an extended censored gamma model introduced by us in this paper, (3) a two-
tailed Tobit model by Maddala (1987) and Bellotti and Crook (2012), and (4) a mixture model of
two Bernoulli random variables and a beta random variable by Calabrese (2014).

Similar to Bastos (2010) and Qi and Zhao (2011), we also examined how well the fractional
response model of Papke and Wooldridge (1996) performs. Note that the fractional response model
is not based on a true distribution function, and thus it does not really serve the purpose of
predicting conditional recovery rates. Empirically, it is also found to be less than satisfactory in
describing our recovery rate sample, and thus the results are not reported to conserve space. We
did not compare our approach with the recovery rate model of Altman and Kalotay (2014) because
their normal mixture model requires first inverting recovery rates by a standard normal distribution
function so that recovery rates are transformed from a value between 0 and 1 to a value without
bound. But this transformation strictly applied is invalid for the recovery rate of 0 or 1, they
therefore make a small adjustment to these two extreme recovery rates by adding or subtracting
by 10−9. Such an adjustment will create a bunching up of the transformed recovery rates at a
large negative and positive values, making it difficult to model by a normal mixture without facing
distributional degeneracy.

Our empirical results show clearly that debt attributes play a significant role in predicting re-
covery rate in a way consistent with economic intuition, regardless of which model is employed.
Likewise, the industry distress variable is highly significant in determining recovery rate, and the
conclusion is universal for all five models. In short, the conditioning information helps greatly in
predicting recovery rate at the time of corporate default. Our empirical findings on relative perfor-
mance among the five models are based on the graphic feature of the five competing models and
a more formal analysis on 20 randomly selected pairs of in-sample and out-of-sample datasets of
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equal size. For each in-sample dataset, the corresponding out-of-sample dataset is the remaining
defaulted debts in the whole sample. We estimate each of the five models with an in-sample dataset
and check performance on both the in-sample and its corresponding out-of-sample datasets. The
analysis is then repeated 20 times to tally the performance results. Our proposed recovery rate
model outperforms for both in-sample and out-of-sample datasets based on two different perfor-
mance metrics. Our results also suggest that the beta distribution works better as a fundamental
driver for a recovery rate model, but it needs to be modified to reflect that fact that recovery
rates tend to load at the endpoints with significant probability mass. A better modification is our
proposed approach of first extending the support and then censoring the parts below 0 and above
1 to create point masses.

2 A censored transformed beta regression model for recovery rate

Our censored transformed beta model (CTBM) for conditional recovery rates is a general form of
beta regression model that handles a closed interval with two endpoints of positive probabilities.
This feature differs from typical beta regression and is critical to the modeling of recovery rates
because real data tend to load the endpoints with nontrivial probabilities. Denote by Ri the
recovery rate for obligor i at the time of its default. It is defined as

Ri =


0 if Zi ∈ (−Cl, 0]
Zi if Zi ∈ (0, 1)
1 if Zi ∈ [1, 1 + Cu)

(1)

where Cl ≥ 0, Cu ≥ 0, Zi+Cl
1+Cl+Cu

is assumed to be a beta-distributed random variable with shape
parameters, ai > 0 and bi > 0, that are specific to a defaulting obligor. Of course, it is impossible to
estimate such obligor-specific shape parameters unless some commonality across defaulting obligors
is imposed. Later, ai and bi will be modeled by two link functions of covariates defining an obligor’s
characteristics and the macro-environment at the time of default. However, Cl and Cu are two
constants that do not depend on the covariates.

Denote the density function of beta distribution by β(z; ai, bi) = 1
B(ai,bi)

zai−1(1− z)bi−1 where

B(ai, bi) is the beta function. It is fairly clear that Ri’s support is the closed interval [0,1], but Zi’s
support is the open interval (−Cl, 1 + Cu) with the following density function:

f(z;Cl, Cu, ai, bi) =
β
(

z+Cl
1+Cl+Cu

; ai, bi

)
1 + Cl + Cu

(2)

Let F (z;Cl, Cu, ai, bi) be the corresponding cumulative distribution function. The two endpoints
of the recovery rate naturally have the following probabilities:

Prob(Ri = 0) = F (0;Cl, Cu, ai, bi)− F (−Cl;Cl, Cu, ai, bi) =

∫ Cl
1+Cl+Cu

0
β(u; ai, bi)du (3)

Prob(Ri = 1) = F (1 + Cu;Cl, Cu, ai, bi)− F (1;Cl, Cu, ai, bi) =

∫ 1

1+Cl
1+Cl+Cu

β(u; ai, bi)du (4)
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For Ri ∈ (0, 1), the recovery rate density is

f(Ri;Cl, Cu, ai, bi) =
β
(

Ri+Cl
1+Cl+Cu

; ai, bi

)
1 + Cl + Cu

(5)

which naturally shares the same form with that of Zi. Although Cl and Cu ≥ 0 are two constants,
the above results show that the probabilities of the two boundary points of the recovery rate, i.e.,
0 and 1, still depend on the covariates through ai and bi.

Let Xi(ti), a k -dimensional column vector, denote the set of debt attributes corresponding
to obligor i at its default time ti, including potentially the common variables that define the
macroeconomic environment at the time. One should not view Xi(ti) as representing a panel data
set, because it is just the snapshot of an obligor at the time of its default. With Xi(ti), one can
use some common link functions to generate a defaulting obligor’s specific shape parameters that
drive the beta distribution. There are infinitely many ways to specify these link functions with the
only requirement that they must be positive functions. Here we assume

ai(Θ) = ln {1 + exp[θ0 + θ1xi,1(ti) + · · ·+ θkxi,k(ti)]} (6)

bi(Ψ) = ln {1 + exp[ψ0 + ψ1xi,1(ti) + · · ·+ ψkxi,k(ti)]} (7)

where xi,j(ti) is the j -th element of Xi(ti); and Θ = (θ0, θ1, · · · , θk) and Ψ = (ψ0, ψ1, · · · , ψk)
denote the parameters in equations (6) and (7), respectively. Although we use the same set of
covariates to model the two link functions, they do not need to share the same covariates. Without
loss of generality, one can view Xi(ti) as a union of two different sets of covariates and force some
parameters to be zero. The above specification is more natural than just using the exponential-
linear function of covariates because it will not be unduly influenced by abnormally large covariate
value. Our specification differs from the typical beta regression which applies a link function on the
mean of the beta distribution. It would be awkward to do so in our case because the two endpoints
with positive probabilities do not lead to a simple analytical formula for the mean recovery rate.

CTBM is more parsimonious than the model of Calabrese (2014) who used two additional link
functions to model the probabilities at the two endpoints. It is quite intuitive to think that these
two additional link functions may not be needed, because a defaulting obligor’s characteristics
naturally determine the location and shape of recovery rate. If a debt’s attributes are such that
its recovery rate will be at an extreme, it will mostly likely to be just one of the extremes (i.e., 0
or 1) as opposed to being some balanced mixture of the two extremes simultaneously. Different
debts can face different recovery rate extremes. It is inconceivable, however, that a single defauting
debt will be confronted with two extreme recovery rates of split probabilities. Empirical studies
reported in the literature often suggest that recovery rates by lumping many obligors together
exhibit bimodality, but it is hard to imagine that a single debt can face a bimodal recovery rate.
This being said, the shape parameters of beta distribution do change with debt attributes through
the link functions, which in turn produce a variety of recovery rate distributions for different debts,
including heavy concentration in one of the two extremes or even the unlikely scenario of having
high probabilities at both ends.
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Figure 1: Plots of the recovery rate density/probability of CTBM based on different combinations
of the shape and edge parameters (a,b,Cl,Cu). In each plot, the green horizontal line is the value of
0. The blue triangle, the red plus, and the black star stand for the probabilities at the endpoints
whereas the densities over the open interval are expressed by the blue dashed, the red short dashed,
and the black solid curves, respectively.
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Figure 1 shows several recovery rate density/probability plots corresponding to different sets of
parameters, i.e., (a, b, Cl, Cu). When a recovery rate falls strictly between 0 and 1, it is the density
as in equation (5), but at each of the two endpoints the probability is based on either equation
(3) or (4). As this figure reveals, the recovery rate density can display various interesting shapes,
depending on the values of the shape parameters a and b and the edge parameters Cl and Cu.
Plots (a)-(c) exhibit the well-known beta distribution properties. Plot (a) shows that in the case
of Cl = Cu = 0, the density for the case of a = b < 1 is a symmetric U shape with the density
growing without bound towards the two endpoints. The recovery rate density can become a uniform
distribution when a = b = 1, or bell-shaped when both a and b are larger than one. Plot (b) shows
the effect of increasing a, and as expected the peak of the recovery rate density moves toward the
right edge. Naturally, the peak will move toward the left edge with increasing b as shown in Plot
(c).

Plots (d)-(h) illustrate the effect of the edge parameters Cl and Cu in determining the endpoint
probabilities. It should be noted that the density/probability function is expected to be discon-
tinuous at the endpoints when the edge parameters are strictly positive. The endpoint probability
can discretely jump up or down, depending on the range of integration defined by Cl (or Cu) and
on whether the recovery density is increasing or decreasing as it approaches an endpoint. In short,
three plots reveal that CTBM model is flexible enough to capture various recovery rate patterns.

Parameters, {Cl, Cu,Θ,Ψ}, which totals 2k + 4, can be estimated by maximizing the log-
likelihood function1, which will be a mixture of density for the recovery rate in the open interval,
(0, 1), and the probabilities for the recovery rates at 0 and 1, and it is in the following form:

L(Cl, Cu,Θ,Ψ; (Ri, Xi(ti)), i = 1, 2, · · · , n)

=

n∑
i=1

1{Ri=0} ln
[
F̄l(Cl, Cu, ai(Θ), bi(Ψ))

]
+

n∑
i=1

1{Ri=1} ln
[
F̄u(Cl, Cu, ai(Θ), bi(Ψ))

]
+

n∑
i=1

1{0<Ri<1} ln

β
(

Ri+Cl
1+Cl+Cu

; ai(Θ), bi(Ψ)
)

1 + Cl + Cu

 (8)

where

F̄l(Cl, Cu, ai(Θ), bi(Ψ)) = F (0;Cl, Cu, ai(Θ), bi(Ψ))− F (−Cl;Cl, Cu, ai(Θ), bi(Ψ))

F̄u(Cl, Cu, ai(Θ), bi(Ψ)) = F (1 + Cu;Cl, Cu, ai(Θ), bi(Ψ))− F (1;Cl, Cu, ai(Θ), bi(Ψ)).

3 Data on recovery rates and debt attributes

A debt instrument’s default means that its issuing obligor has defaulted, which in turn implies that
all other debt instruments issued by the same obligor are also in default but face varying recovery

1The maximum likelihood estimation program is coded in GAUSS, and the optimization is performed with the
GAUSS built-in constrained optimization procedure where convergence is defined to be obtaining all elements of the
gradient vector less than 10−5. The initial parameter values are all taken as zeros.
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rates (partial or full) specific to instruments. The same obligor could in principle defaults multiple
times over some time span, and thus one could expect to see several defaulted debts by the same
obligor carrying different recovery rates reflective of seniority, collateral and time of default.

Table 1: Definition of the six debt attributes for predicting the recovery rate.
Variable Definition

Industry Distress (ID) Industry median 1-month probability of default in basis points
at the month end prior to default

Debt Cushion (DC) Debt below/Issuer total debt; Debt below: The total of all defaulted
debt that is contractually subordinate to the current instrument.

Instrument Ranking (IR) Instruments in each default event are ranked by Moody’s in relation to
each other based on the structure prior to default, taking into consideration
collateral and instrument type.

IRBaseline IR is 1
IR1 IR is 2
IR2 IR is 3
IR3 IR is greater than or equal to 4

Collateral Type (CT)
CTBaseline Debt has no collateral
CT1 Debt has collateral

Instrument Type (IT)
IT1 Revolvers
ITBaseline Term loans
IT2 Senior secured bonds
IT3 Senior subordinated bonds
IT4 Senior unsecured bonds
IT5 Junior or subordinated bonds

Utility (UT)
UTBaseline Issuer is not classified as a utility company
UT1 Issuer is classified as a utility company

Our data sample comes from two sources: Moody’s Ultimate Recovery Database (URD) and
the Credit Research Initiative (CRI) database at the National University of Singapore. Moody’s
URD to which we have access covers defaulted debts by US firms in the period from 1987 to 2012,
whereas the CRI database, which is freely accessible, starts from December of 1990 to now. Our
final matched sample thus spans the period from December 1990 to the end of 2012, and contains
3827 defaulted debts with recovery rates. The recovery rates used in this paper are discounted
recovery rates provided in Moody’s URD, which are the nominal recovery rates being discounted at
each instrument’s prepetition interest rate. In addition to recovery rates, our sample contains five
recovery-rate predictors from Moody’s URD, which are Debt Cushion (DC), Instrument Ranking
(IR), Collateral Type (CT), Instrument Type (IT), and Utility (UT). Beyond these five debt in-
strument specific variables, we employ Industry Distress (ID) as an additional predictor to reflect
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the credit market condition of the industry at the time of a default. ID therefore is an time-varying
industry-wide variable that is not unique to a particular defaulting debt. The definitions of the six
predictors are given in Table 1. Some descriptive statistics for the recovery rate and the six predic-
tors are provided in Table 2. Evidently, the recovery rate indeed has two point masses occurring
at 0 with 6.69% and 1 with 30.36%, respectively. As Table 2 shows, each of the six predictors also
covers a range of values with a reasonable distribution.

Further discussion on the five predictors in Moody’s URD can be found in Altman and Kalotay
(2014). ID requires further elaboration, however. It is represented by the industry median 1-month
probability of default (PD) at the day of default as a means to characterize the immediate outlook
on the credit market for the defaulting obligor’s industry. The industry classification is according
to Bloomberg which groups firms into ten industry segments. The industry median PDs are taken
from the CRI database, which are computed with the PDs of individual firms in the same industry
of an country/economy for each business day. Individual firm PDs are generated by the forward-
intensity model of Duan, et al (2012), and as of the time of this writing, has been implemented
on all exchange-listed firms in 109 economies around the world. The technical details on the CRI
implementation can be found in the RMI-CRI Technical Report (2013). The historical series of
CRI PDs are re-estimated every month to reflect data additions and revisions, and the data date
of the PDs used in the paper is December 31, 2013. It is worth noting that our measure of industry
distress differs from that of Acharya, et al (2007) by taking advantage of this newly available and
more direct measure of financial distress level of an industry.

4 Estimation results and comparison with alternatives

4.1 Empirical performance of CTBM

The maximum likelihood estimation results for CTBM are presented in Table 3. It is clear from
this table that industry distress (ID) is an important predictor of recovery rate. Its coefficients in
shape parameter functions, ai(Θ) and bi(Ψ), are significantly negative and positive at the 1% level,
respectively. Since a lower ai(Θ) (or a higher bi(Ψ)) will lower recovery rate as shown in Figure (1),
a defaulted debt in a more distressed industry (i.e., a higher industry median PD) tends to lower
recovery rate.

For each of the three predictors DC, CT, and UT, its significant effect (at the 1% significance)
on recovery rate goes through just one of the two shape parameters. Combining the significance
results with the signs of the parameter estimates yields a conclusion that when a defaulted debt has
more debt cushion, is collateralized, or is a utility firm, the recovery rate tends to be higher. These
conclusions are intuitive and here are the reasons. First, DC is a capacity metric that captures
beyond the rank of a debt instrument in capital structure to reflect the degree of subordination by
other debts as a proportion of total claims (see Keisman and Van de Castle, 1999). Second, if a
defaulted debt has collateral, i.e., CT=1, then it tends to have a higher recovery rate than those
without collateral, i.e., CT=0. Third, the result on UT simply reflects that fact that the utility
industry has the highest recovery rate among all industries as previously documented by authors

9



such as Altman and Kishore (1996), Acharya, et al (2007) and Qi and Zhao (2011). It is hence not
a surprise to find a higher recovery rate when UT=1 as opposed to UT=0.

The parameter estimates corresponding to the indicator variables IR1 and IR2 for both shape
parameter functions are significantly negative at the 1% level, indicating that the recovery rate of
a defaulted debt in these two instrument ranking categories determined by Moody’s differ from
those in the category of IRBaseline, the highest rank. A negative parameter value in the shape
parameter function, ai(Θ), suggests a lower recovery rate, but it conflicts with the effect of a
negative parameter value in the other shape parameter function which implies a higher recovery
rate. Therefore, an IR1 or IR2 debt may not have a lower recovery rate as compared to the baseline
debt that receives the highest rank from Moody’s. In the case of IR3, the parameter in ai(Θ) is
significantly negative at the 1% level, but the other parameter is insignificant, suggesting that debts
in the IR3 category, the lowest rank, would face lower recovery rates.

For the instrument type, revolvers (IT1) has a significant positive parameter at the 5% level
only for the shape parameter function, ai(Θ). As compared to term loans, i.e., the baseline case,
revolvers are expected to face a higher recovery rate. In the case of bonds that senior secured
(IT2) and unsecured (IT4), the parameter estimates are all positively significant, but their effects
on recovery rate, as compared to that of term loans, are not clear because the positive value in
ai(Θ) suggesting a higher recovery rate but that conflicts with the effect of a positive parameter
in bi(Ψ). For junior or subordinated bonds (IT5), the estimated coefficients are insignificant, but
the signs of the two coefficients would have indicated a lower recovery rate if they were statistically
significant.

Due to the point mass at the two endpoints, i.e., 0 and 1, the expected recovery rate does
not lead to a simple expression for the standard beta distribution, i.e., E(Ri | Xi) 6= ai(Θ)

ai(Θ)+bi(Ψ) .
Although the expected value expression does not give rise to a simple closed-form solution, its in-

tegral expression, i.e.,
∫ 1

1+Cl
1+Cl+Cu

β(u; ai(Θ), bi(Ψ))du+
∫ 1

0
u

1+Cl+Cu
β
(

u+Cl
1+Cl+Cu

; ai(Θ), bi(Ψ)
)
du, can

be useful to our understanding on the impact of a predictor. Intuitively, if an increase (decrease)
in a predictor’s value is to increase (decrease) ai(Ψ) without a simultaneous increase (decrease) in
bi(Ψ), then the expected recovery rate will rise. When the coefficients in the two link functions
for the same predictor are opposite in sign, this is clearly the case. In general, the expected value
will need to be evaluated via a numerical integration to obtain the impact of any particular predic-
tor. Such numerical assessments can be conducted for different values of Xi using the maximum
likelihood parameter estimate. The integral formula reflects the point mass at the two endpoints.
It is evident that the point mass at the 100% recovery rate will, for example, increase if ai(Ψ) is
increased without an offsetting increase (decrease) in bi(Ψ).

Finally, the two edge parameters – Cl and Cu – are significant at the 1% level, reflecting the
need to accommodate high incidents of recovery rate at 0 and 1. In fact, Cu is much larger than
Cl to reflect a higher likelihood of having complete recovery than total write-off, which according
to Table 1 reflective of our sample are 30.36% and 6.69%, respectively.
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CTBM performs quite well in capturing the unconditional recovery rate distribution as evident
in Plot (e) of Figure (2) where the empirical frequency distribution is compared with the estimated
model frequency distribution. The discussion on their construction is left in Section 4.3. Since
CTBM deals with conditional recovery rate, restricting to a subsample of certain debt characteris-
tics can be a way of assessing its performance. We pick two subsamples with the debt characteristics
of (IR1, CTBaseline, IT4, UTBaseline) and (IRBaseline, CT1, IT1, UTBaseline) and apply CTBM esti-
mated to the full data sample. CTBM’s performance conditional on these debet characteristics are
exhibited in Figures (3e) and (4e), which show reasonably good general performance. It is worth
noting that the recovery rate distribution as shown in these plots is highly data specific. A flexible
model that can factor in individual debt characteristics will be essential to the task of successfully
modeling credit portfolio losses.

4.2 Four alternative recovery rate models to CTBM

We now study how well CTBM performs in comparison with four alternatives: (1) a censored
gamma model (CGM) of Sigrist and Stahel (2012) and Yashkir and Yashkir (2013), (2) an extended
CGM by introduced in this paper and denoted by CGM*, (3) a two-tailed Tobit model (TTM) by
Maddala (1987) and Bellotti and Crook (2012), and (4) a mixture model of two Bernoulli random
variables and a beta random variable (MBB) by Calabrese (2014).

With a k-dimensional predictor x, CGM uses the gamma random variable G (with shape pa-
rameter α and scale parameter link function ln[1 + exp(β0 + βx)]) and a positive constant ξ to
model recovery rates with two endpoints in the following way:

R = 0× I{G≤ξ} + (G− ξ)× I{G∈(ξ,1+ξ)} + 1× I{G≥1+ξ} (9)

The model has k+3 parameters that need to be estimated. The link function for the scale parameter
can of course be specified in many different ways. This particular choice ensures consistency with
the link functions in our CTBM to facilitate meaningful empirical comparison later. The parameter
estimates of CGM are provided in Table 4.

CGM* is our extension of CGM by allowing the shape parameter to also depend on x but still use
the equation in (9) to define the recovery rate. CGM* has two link functions: ln[1+exp(α∗0 +α∗x)]
and ln[1 + exp(β∗0 + β∗x)], and the number of parameters becomes 2k + 3.

Note that CGM or CGM* cannot use two different cutoff values, say, ξl ≤ ξu because introducing
them would require scaling the density in the open interval (ξl, ξu) accordingly with a factor of
1/(ξu− ξl). The likelihood function thus becomes unbounded when ξu = ξl and cannot be properly
maximized. The current approach reflected in CGM or CGM* in essence imposes the constraint of
ξu − ξl = 1. Table 5 presents the estimation results for CGM*.

As our empirical results show later, the beta distribution used in our proposed CTBM is a better
driver for recovery rates. This is not at all surprising, knowing that full recovery (i.e., R = 1) occurs
more frequently in the data sample (see Panel A of Table 2).
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Figure 2: The unconditional empirical and in-sample fitted model frequency distributions of re-
covery rates denoted by hin(bj |all) and ĥin(bj |all). The sample comprises 3827 recovery rates
with six prediction variables from December 1990 to 2012. Panels (a)-(e) display the results for
five models: CGM*, CGM, TTM, MBB, and CTBM. The bars in green and red are the empiri-
cal and fitted model distributions, respectively. Recovery rates are divided into m + 2 categories
from left to right: 0, {( j−1

m , jm ]; j = 1, · · · ,m − 1}, (m−1
m , 1) and 1, and m is set to 20. RWSD=√∑m+1

j=0 [ĥin(bj |all)− hin(bj |all)]2hin(bj |all) and WAD=
∑m+1

j=0 |ĥin(bj |all)−hin(bj |all)|hin(bj |all).
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Figure 3: The conditional empirical and in-sample fitted model frequency distributions of recovery
rates denoted by hin(bj |x0) and ĥin(bj |x0) where x0 is set to (IR1, CTBaseline, IT4, UTBaseline). The
sample comprises 3827 recovery rates with six prediction variables from December 1990 to 2012, and
there are 520 recovery rates with the predictor value equal to x0. Panels (a)-(e) display the results
for five models: CGM*, CGM, TTM, MBB, and CTBM. The bars in green and red are the empirical
and fitted model distributions, respectively. Recovery rates are divided into m+ 2 categories from
left to right: 0, {( j−1

m , jm ]; j = 1, · · · ,m − 1}, (m−1
m , 1) and 1, and m is set to 20. RWSD=√∑m+1

j=0 [ĥin(bj |x0)− hin(bj |x0)]2hin(bj |x0) and WAD=
∑m+1

j=0 |ĥin(bj |x0)− hin(bj)|hin(bj |x0).

13



Figure 4: The conditional empirical and in-sample fitted model frequency distributions of recovery
rates denoted by hin(bj |x0) and ĥin(bj |x0) where x0 is set to (IRBaseline, CT1, IT1, UTBaseline). The
sample comprises 3827 recovery rates with six prediction variables from December 1990 to 2012, and
there are 636 recovery rates with the predictor value equal to x0. Panels (a)-(e) display the results
for five models: CGM*, CGM, TTM, MBB, and CTBM. The bars in green and red are the empirical
and fitted model distributions, respectively. Recovery rates are divided into m+ 2 categories from
left to right: 0, {( j−1

m , jm ]; j = 1, · · · ,m − 1}, (m−1
m , 1) and 1, and m is set to 20. RWSD=√∑m+1

j=0 [ĥin(bj |x0)− hin(bj |x0)]2hin(bj |x0) and WAD=
∑m+1

j=0 |ĥin(bj |x0)− hin(bj)|hin(bj |x0).
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TTM uses a normal random variable W with mean ρ0 +ρx and standard deviation σ to model
recovery rates with two endpoints at 0 and 1. Again, x is a k-dimensional recovery rate predictor.
The recovery rate is modeled as

R = 0× I{W≤0} +W × I{W∈(0,1)} + 1× I{W≥1} (10)

This model has k + 2 parameters. The estimation results for this model are presented in Table 5.

MBB first uses one Bernoulli random variable to model the occurrence of the event that the
recovery rate is one of the two endpoints (0 or 1) with the probability equal to exp(η0+ηx)

1+exp(η0+ηx) . Second,
it assume another Bernoulli random variable for 1, conditional on the event that an endpoint has
occurred, and this conditional probability equals exp(ζ0+ζx)

1+exp(ζ0+ζx) . Finally, the conditional density for

the recovery rate in the open interval (0, 1) is to follow a beta distribution. This formulation
is also known as the inflated beta regression by Ospina and Ferrari (2010 & 2012). Calabrese

(2014) specified this beta distribution with mean µ = exp(κ0+κx)
1+exp(κ0+κx) so that the average recovery

rate stays between 0 and 1. In addition, its variance is set to µ(1−µ)
1+φ where φ = exp(−π0 − πx)

represents the precision parameter. MBB has 4k+4 parameters with 2k+2 being used to define the
beta distribution and 2k + 2 to describe the probabilities of the two Bernoulli random variables.2

Applying MBB to the same recovery rate data sample, we obtain the parameter estimates which
are presented in Table 6.

Comparing CTBM with MBB is most interesting, because both models use the beta distribution
as a driver. CTBM is much more parsimonious (2k + 4 versus 4k + 4), however, because the
probability mass for either endpoint (0 or 1) is created by simply stretching the support of the
beta distribution and applying truncation. The construction of CTBM in effect bypasses the two
Bernoulli random variables of MBB whose probabilities mostly likely need to depend on the debt
attributes in order to work well.

Figures 2-4 exhibit the performance of CTBM discussed earlier. On the same graphs, we plot
the performance of the four competing models. It is fairly clear from these plots that TTM is the
worst performing model even though it is the most parsimonious among all, i.e., k + 2. CTBM
is evidently the best performing recovery rate model. The performance of MBB and CTBM are
visually comparable, but the CTBM is substantially more parsimonious (4k+4 versus 2k+4). When
comparing CGM with CGM*, it is clear that our extension to let the shape parameter to also depend
on debt attributes improves performance, and a number of parameters in the shape parameter link
function are highly significant as shown in Table 5. Even with this modification, CGM* falls short
of the level of performance achieved by CTBM, suggesting perhaps non-surprisingly that the beta
distribution works better for recovery modeling than does the gamma distribution.

2MBB defines its link functions via mean and precision of the beta distribution. An alternative way is to impose
the link functions on the shape parameters as our CTBM’s link functions in equations (6) and (7). The number
of parameters will remain the same, and our experiment shows that MBB’s empirical performance level is largely
unchanged.
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Figure 5: The QQ plots of the 3827 recovery rates from December 1990 to 2012 against their
corresponding predicted recovery rates under five models: CGM*, CGM, TTM, MBB, and CTBM.

Model performance can also be examined by comparing QQ plots as in Figure 5. Judging from
the QQ plots, the performance of CTBM and MBB are comparable. However, CTBM has fewer
parameters, and this parsimony naturally places CTBM above MBB. Both AIC and BIC reported
on the QQ plots indicate CTBM’s clear dominance over MBB as well as other three models.

4.3 Performance study of the five models

The analyses thus far are in-sample and graphic. We now devise two performance metrics and use
them to study performance both in- and out-of-sample. These two performance metrics measuring
the difference between the empirical and model frequency distributions are: (1) the root weighted
mean squared difference (RWSD) and (2) weighted mean absolute difference (WAD).

Recovery rates are divided intom+2 categories from left to right: 0, {( j−1
m , jm ]; j = 1, · · · ,m−1},
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(m−1
m , 1) and 1, and m is set to 20 in our empirical implementation so that each category (except for

0 and 1) amounts to a 5% recovery rate range. The in-sample empirical frequency distribution can
be naturally computed with the above recovery rate partition and is denoted by hin(bj |x0) where
x0 stands for the debt attribute restriction imposed on sample selection. The in-sample fitted
model frequency distribution, denoted by ĥin(bj |x0), is constructed by (1) estimating a model on
the whole sample, (2) generating the model’s distribution function for every debt in the sample
meeting the debt attribute restriction indicated by x0, (3) averaging over the fitted model frequency
distributions for all debts meeting the debt attribute restriction, and (4) computing the theoretical
frequency for each of the m+ 2 recovery rate categories.

The in-sample RWSD and WAD are defined as follows:

RWSDin(x0) =

√√√√m+1∑
j=0

[ĥin(bj |x0)− hin(bj |x0)]2hin(bj |x0),

WADin(x0) =

m+1∑
j=0

|ĥin(bj |x0)− hin(bj)|hin(bj |x0).

When the entire sample is used, we will denote them by RWSDin(all) and WADin(all). Similarly,
we define RWSDout(x0) and WADout(x0) by replacing hin(bj |x0) and ĥin(bj |x0) with hout(bj |x0)

and ĥout(bj |x0).

The RWSD and WAD reported in Figure 2 are RWSDin(all) and WADin(all) using the entire
data sample of 3827 recovery rates with the models being estimated in-sample. It is evident from
these two performance metrics, CTBM is the best performing model when all recovery rates are
used. The same can be said when one zeros in on a sub-sample with some conditioning debt
attributes as in Figure 3. But in the case of Figure 4 where a different conditioning set of debt
attributes is involved, CGM* turns out to be best performing, although CTBM is not far behind.
This should not be a surprise, however, because a model with the best fit overall can still be
overtaken by another model for some subset of data.

In order to see how robust the above conclusions are, we now conduct a more thorough out-
of-sample analysis. First, we randomly select an in-sample dataset with a size of 1914 from the
entire sample of 3827 recovery rates. The remaining half of the sample will be treated as the out-of-
sample dataset. Each of the five competing models is then estimated to the in-sample dataset and
its RWSDin(all) and WADin(all) are computed. The fitted model is then applied to the out-of-
sample dataset to compute RWSDout(all) and WADout(all) with 22 recovery rate categories (i.e.,
m = 20). Note that here ‘all’ means use all recovery rates in either the in-sample or out-of-sample
dataset. Repeat the simulation, model estimation and computation of performance metrics 100
times, and then calculate the root mean squared errors (RMSE).

The RMSE of the five recovery rate models are presented in Table 7, and the results are
organized under the in-sample and out-of-sample categories. The RMSE of CTBM is clearly the
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smallest, implying that that CTBM proposed in this paper outperforms all other four models both
in-sample and out-of-sample in terms of either performance metric (RWSD or WAD). The model
that comes closest to CTBM is MBB which is far less parsimonious than CTBM. In the current
implementation, MBB has 52 (i.e., 4 × 12 + 4) parameters whereas CTBM only involves 28 (i.e.,
2× 12 + 4) parameters. Although the out-of-sample performance of CTBM deteriorates somewhat,
its RMSE in RWSD (or WAD) remains reasonably close to that of its in-sample counterpart.

We also conduct the in-sample and out-of-sample analysis over time. We divide the sample into
two halves according to their default times. The first half is taken as the in-sample data which
contains 1914 debts whose defaults occurred earlier in the sample whereas the second half, the out-
of-sample data, contains the remaining 1913 defaulted debts. Similar to the random out-of-sample
analysis, the results in Table 8 based on the RWSD and WAD of the five models are clearly
supportive of CTBM, our proposed model.

5 Conclusion

This paper presents a new beta regression model for recovery rates that is constructed by first
extending the support of the beta distribution beyond (0, 1) and then censoring the parts below
0 and above 1 to create point masses for the recovery rates at 0 and 1. This approach is shown
to outperform four alternative models considered in this paper which relies on the gamma, beta
or normal distribution as the basic driver. The performance study is based on an analysis of 20
randomly selected pairs of in-sample and out-of-sample datasets of equal size created from a sample
of 3,827 defaulted debts obtained from Moody’s Ultimate Recovery Database complemented by an
industry distress measure constructed from the Credit Research Initiative Database at the National
University of Singapore. The results indicates that the beta distribution is a better recovery rate
driver, and extending/censoring the support is a better way to accommodate probability mass for
recovery rate at 0 and 1.

Our empirical results also show clearly that debt attributes known from the issuance time
and industry distress level at the time of default are both significant in predicting recovery rate.
The typically observed bimodality in recovery rates fails to account for the available conditioning
information. It is therefore critical to differentiate between conditional and unconditional recovery
rate distributions. Bi-modality in recovery rate alone makes a straightforward use of an average
recovery rate of, say 40%, a questionable practice. The fact that conditional distribution differs
significantly from the unconditional one reinforces the need to factor in the conditioning information
that is available at the time of corporate default. A better credit risk management tool can be
created by suitably coupling this conditional recovery rate model with a good corporate default
prediction model.
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Table 2: Distributions of recovery rates and each of the six predictors. The sample contains 3827
recovery rates and the values of the six predictors from December 1990 to 2012. The six predictors
are ID, DC, IR, CT, IT, and UT with definitions in Table 1.
Variable Mean Std 5% 25% 50% 75% 95%

Panel A: Recovery rate
Ri ∈ [0, 1] 0.551 0.385 0.000 0.178 0.581 1.000 1.000
(Ri = 1 with 30.36%; Ri = 0 with 6.69%)

Panel B: ID
Low ID (ID≤0.359bps) 0.652 0.360 0.000 0.376 0.742 1.000 1.000
Median ID (0.359bps<ID<1.240bps) 0.566 0.378 0.000 0.205 0.601 1.000 1.000
High ID (ID≥1.240bps) 0.434 0.385 0.000 0.075 0.266 0.834 1.000

Panel C: DC
Low DC (DC=0) 0.403 0.359 0.000 0.057 0.293 0.724 1.000
Median DC (0<DC<0.339) 0.456 0.342 0.001 0.137 0.425 0.750 1.000
High DC (0.339≤DC≤1) 0.813 0.300 0.153 0.679 1.000 1.000 1.000

Panel D: IR
IRBaseline 0.737 0.324 0.101 0.494 0.960 1.000 1.000
IR1 0.417 0.356 0.000 0.102 0.300 0.725 1.000
IR2 0.300 0.344 0.000 0.002 0.131 0.536 1.000
IR3 0.276 0.331 0.000 0.001 0.103 0.617 0.919

Panel E: CT
CTBaseline 0.374 0.354 0.000 0.036 0.246 0.671 1.000
CT1 0.730 0.328 0.114 0.455 0.947 1.000 1.000

Panel F: IT
ITBaseline 0.708 0.344 0.022 0.435 0.839 1.000 1.000
IT1 0.823 0.282 0.208 0.690 1.000 1.000 1.000
IT2 0.593 0.338 0.103 0.209 0.574 1.000 1.000
IT3 0.257 0.301 0.000 0.010 0.124 0.441 0.908
IT4 0.441 0.355 0.000 0.106 0.365 0.748 1.000
IT5 0.242 0.313 0.000 0.000 0.106 0.377 1.000

Panel G: UT
UTBaseline 0.535 0.384 0.000 0.162 0.547 1.000 1.000
UT1 0.753 0.342 0.038 0.491 1.000 1.000 1.000
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Table 3: Parameter estimates of CTBM. The sample contains 3827 recovery rates and six predictors
from December 1990 to 2012. The p-values are based on the Wald chi-squared test.

Θ Ψ
Variable Estimate p-value Estimate p-value

Intercept 0.187 0.368 1.983** 0.000
ID -0.0530** 0.000 0.0798** 0.003
DC -0.188 0.371 -3.788** 0.000
IR1 -0.765** 0.000 -0.599** 0.000
IR2 -1.291** 0.000 -0.971** 0.000
IR3 -1.206** 0.000 -0.306 0.371
CT 0.648** 0.000 -0.129 0.671
IT1 0.371* 0.023 -0.225 0.263
IT2 1.144** 0.000 1.815** 0.000
IT3 0.207 0.284 1.191** 0.002
IT4 0.577** 0.001 0.685* 0.031
IT5 -0.290 0.135 0.237 0.531
UT 0.100 0.567 -1.878** 0.000

Cl 0.0089** 0.000
Cu 0.6918** 0.000
Note: ‘**’ and ‘*’ indicate significance at the 1% and 5%
level, respectively.

22



Table 4: Parameter estimates of CGM and TTM. The sample contains 3827 recovery rates and six
predictors from December 1990 to 2012. The p-values are based on the Wald chi-squared test.

β in CGM ρ in TTM
Variable Estimate p-value Estimate p-value

Intercept -1.025** 0.000 0.424** 0.000
ID -0.0366** 0.000 -0.02167** 0.000
DC 1.753** 0.000 0.733** 0.000
IR1 -0.198** 0.000 -0.090** 0.000
IR2 -0.311** 0.000 -0.185** 0.000
IR3 -0.562** 0.000 -0.229** 0.000
CT 0.406** 0.000 0.199** 0.000
IT1 0.423** 0.000 0.156** 0.000
IT2 -0.162* 0.024 -0.038 0.176
IT3 -0.258* 0.017 -0.103* 0.018
IT4 0.094 0.364 0.051 0.195
IT5 -0.274* 0.013 -0.126** 0.005
UT 0.999** 0.000 0.373** 0.000

α 1.8606** 0.000
ξ 0.1279** 0.000
σ 0.4169** 0.000
Note: ‘**’ and ‘*’ indicate significance at the 1% and 5%
level, respectively.

23



Table 5: Parameter estimates of CGM*. The sample contains 3827 recovery rates and six predictors
from December 1990 to 2012. The p-values are based on the Wald chi-squared test.

α∗ β∗

Variable Estimate p-value Estimate p-value

Intercept 0.284* 0.048 0.020 0.878
ID -0.0460** 0.000 -0.0357** 0.000
DC 0.467* 0.015 1.645** 0.000
IR1 -0.688** 0.000 0328** 0.002
IR2 -1.349** 0.000 0.841** 0.000
IR3 -1.189** 0.000 0.309 0.150
CT 0.869** 0.000 -0.359 0.118
IT1 0.485** 0.007 -0.037 0.847
IT2 1.595** 0.000 -1.300** 0.000
IT3 0.344* 0.034 -0.934** 0.000
IT4 0.745** 0.000 -753** 0.000
IT5 -0.061 0.731 -0.522* 0.011
UT 0.105 0.585 1.134** 0.000

ξ∗ 0.0167** 0.000
Note: ‘**’ and ‘*’ indicate significance at the 1% and 5%
level, respectively.

Table 6: Parameter estimates of MBB. The sample contains 3827 recovery rates and six predictors
from December 1990 to 2012. The p-values are based on the Wald chi-squared test.

η ζ κ π
Variable Estimate p-value Estimate p-value Estimate p-value Estimate p-value

Intercept -1.439** 0.000 2.173** 0.000 -0.476** 0.000 -0.818** 0.000
ID -0.0254 0.076 -0.0319 0.398 -0.0802** 0.000 -0.0532** 0.000
DC 2.956** 0.000 2.844** 0.000 0.707** 0.000 0.394** 0.004
IR1 0.191 0.089 -2.638** 0.000 -0.213** 0.000 0.029 0.666
IR2 0.526** 0.000 -3.190** 0.000 -0.321** 0.000 0.293** 0.002
IR3 0.467* 0.017 -4.474** 0.000 -0.255* 0.021 0.243* 0.043
CT 0.213 0.260 1.049* 0.032 0.358** 0.000 -0.196 0.100
IT1 0.469** 0.000 1.142 0.054 0.204* 0.014 -0.125 0.216
IT2 -0.873** 0.000 2.089 0.051 0.218** 0.006 -0.227* 0.020
IT3 -0.441 0.059 -0.719 0.188 -0.189 0.156 0.088 0.548
IT4 -0.647** 0.002 0.605 0.207 0.095 0.419 0.032 0.812
IT5 0.332 0.147 -1.043* 0.040 -0.196 0.163 -0.053 0.734
UT 1.458** 0.000 2.504** 0.000 0.360** 0.000 0.268* 0.016
Note: ‘**’ and ‘*’ indicate significance at the 1% and 5%
level, respectively.
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Table 7: The performance of the five competing models for the recovery rate distribution over the
100 pairs of randomly selected in-sample and out-of-sample datasets. The in-sample dataset with
a size of 1914 is randomly selected from the entire sample of 3827 recovery rates. The remainder
is treated as the out-of-sample dataset whose size is 1913. Each of the five models is estimated
using the in-sample dataset and then applied to the out-of-sample dataset. The in-sample root
mean squared errors (RMSE) of RWSD and WAD are presented along with those from the out-
of-sample analysis.

In-sample RMSE Out-of-sample RMSE
RWSD WAD RWSD WAD

CGM* 0.0107** 0.0093** 0.0129** 0.0108**
CGM 0.0134** 0.0088** 0.0150** 0.0111**
TTM 0.0334** 0.0263** 0.0338** 0.0262**
MBB 0.0087** 0.0072** 0.0111** 0.0093**
CTBM 0.0079 0.0052 0.0104 0.0084
Note: ‘**’ indicates significance of a paired t test at the 1%
level. The null hypothesis is that the mean performance
metric (RWSD or WAD) under a model is smaller than or
equal to that of the CTBM.

Table 8: The performance of the five competing models for the recovery rate distribution in-sample
and out-of-sample over time. The sample period (December 1990 to 2012) is partitioned into
two halves with the first half (in-sample) containing 1914 debts with earlier default dates and the
remaining 1913 debts are treated as out-of-sample. Each of the five models is estimated using the
in-sample dataset and then applied to the out-of-sample dataset. The RWSD and WAD of the
five models are presented.

In-sample performance Out-of-sample performance
RWSD WAD RWSD WAD

CGM* 0.0102 0.0075 0.0250 0.0226
CGM 0.0139 0.0093 0.0253 0.0230
TTM 0.0470 0.0377 0.0572 0.0411
MBB 0.0102 0.0080 0.0215 0.0178
CTBM 0.0092 0.0062 0.0186 0.0160
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