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Abstract

A credit rating system classifies obligors into K cohorts by assessing their credit
risks. Any member in a static pool of obligors could later migrate to one of the K
cohorts plus two additional possibilities — default and other corporate exit. Ideally,
the probabilities defining this (K + 2) x (K + 2) migration system should reflect the
phase of a credit cycle, and decline monotonically away from the diagonal, reflecting
the fact that small moves in credit quality occur more frequently than big changes. We
propose such a stochastic rating migration model constructed with a set of credit cycle
indices to reflect market conditions while imposing an intuitive prior belief structure
of declining migration probabilities off the diagonal. We estimate this rating migra-
tion model with a pseudo-Bayesian sequential Monte Carlo technique, and deduce a
corresponding set of forward migration generators that can then be used to produce
point-in-time (PIT) probabilities of default (PDs) for any forward starting time and
prediction horizon. These forward PIT-PDs are naturally dynamic over time and re-
flective of a specific forward period of interest. We apply this rating migration model
on the global corporate credit migration data reported by the S&P over the period of
2000-2015, and show how these PIT-PDs change through different phases of a credit
cycle. This rating migration model also allows for examination of the stability of the
implied through-the-cycle (TTC) PDs vis-a-vis the historical measure of TTC-PDs for
different rating cohorts at different points of time.
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1 Introduction

Credit relationships exist in many forms. From a corporate perspective, liabilities of a
firm are credit exposures of its counterparties. Loans, bonds, account payables, insurance
policy obligations, and derivatives exposures are some examples. Assets of a firm may
also be subjected to credit risk. They may consist of liabilities of other firms reflected in
account receivables and other credit claims on various obligors, for example, a bank’s loans
to its borrowers. Credit exposures are contingent claims with losses only occurring when
some obligor defaults and the recovery is not full. Risk managing credit exposures and/or
properly accounting for them would not be possible without deploying credit risk models.
In the banking context, the Basel capital regulations has long made the modeling of bank
credit risks an undertaking of great significance. The soon-to-be implemented IFRS9/CECL!
financial reporting standard is likely to be an even broader and more impactful formal
recognition of credit risk exposures of a firm.

Credit rating migration has been the subject of many studies; for example, Altman
(1998) examined and compared the rating migrations reported by Moody’s and S&P over
1970-1996. Credit rating migration has also been formally modeled by many. Among them,
the CreditMetrics™ of JP Morgan (1997) is perhaps the best known earlier effort and fol-
lowed by many since. The stochastic drivers in CreditMetrics™ are equity values of the
corporates in the pool where credit rating migrations occur when an individual obligor’s
standardized equity return moves across different rating thresholds that are deduced under
a standard normal distribution coupled with the expected default rates for different rating
classes. Under such a model, credit risk correlations are naturally deduced from equity re-
turn correlations. The obvious drawback of such an approach rests with its overreliance on
equity values which are subject to differences in leverage and liquidity, among other factors,
critical to default. Quality aside, many obligors in typical credit portfolios are non-corporate
or simply small and medium sized firms without traded stock prices, and naturally the ap-
plicability of CreditMetrics™ is limited. Bangia, et al (2002) added business cycle into their
model by conditioning rating migration matrix on two regimes — expansion and contraction.
Feng, et al (2008) described credit rating migration through a factor probit model where the
driving stochastic factor is latent with a time dynamic, and the filtered latent factor path
could then be used to reveal the credit cycle. Other approaches include Lando and Skdeberg
(2002), Gagliardini and Gourieroux (2005), Mahlmann (2006), Frydman and Schuermann
(2008), Kadam and Lenk (2008), and Marcucci and Quagliariello (2009), among others.

!The IFRSY (International Financial Reporting Standard 9) is the International Accounting Standards
Board’s proposal to account for impairments of financial assets, which became effective in 2018 and has
been implemented in stages in different jurisdictions. The CECL (Current Expected Credit Loss), on the
other hand, started as a joint project of the Financial Accounting Standards Board of the US with the
International Accounting Standards Board, but the US accounting body later decided to go a separate way
with the CECL being scheduled to take effect in 2020.



Credit exposures are often complex because a credit relationship my involve multiple
payments. In order to assess expected credit loss of a single debt instrument or a portfolio
of debt obligations, one must have forward default probabilities at the time of evaluation,
corresponding to different future periods, for that single obligor or all obligors in the portfolio.
These forward probabilities are known as point-in-time (PIT) probabilities of default (PDs)
and need to be coupled with suitable recovery rates to arrive at the final expected loss.
Since the evaluation time can be at any phase of a credit cycle, it is essential to have these
PIT-PDs reflective of the credit cycle. Obligors may have tendency to default together, and
thus a good model should incorporate default correlations. Most credit rating agency models
and internal credit risk models of financial institutions address an obligor’s credit quality
in isolation, i.e., marginal default likelihood, and slot obligors into rating cohorts, say, 10
categories. An obligor under such a rating system may migrate from one rating category
to another. Recording the credit migration experience under a rating system generates a
historical series of realized credit migration matrices. These credit migration matrices offer
a wealth of information, but cannot be directly used to produce suitable forward PIT-PDs
needed for the purpose of assessing expected credit loss unless a suitable dynamic model is
developed. PIT-PDs are in sharp contrast with the through-the-cycle (TTC) ratings typically
adopted by credit rating agencies, which emphasizes credit ratings being a smoothed quantity
over a credit cycle.

We propose in this paper a new model that maps the historical time series of rating
migration matrices into a forward-looking stochastic rating migration matrix for any future
period of interest. These stochastic rating migration matrices serve as the device for generat-
ing forward PIT-PDs and forward-looking TTC-PDs. The idea is to link the realized default
rates and other-exit rates of each rating cohort to a set of credit cycle indices, and these
credit cycle indices are captured by a dynamic time series model that exhibits concurrently
global mean revision and local momentum as proposed in Duan (2016). The exit rate from
a static pool of obligors for reasons other than default/bankruptcy is a factor whose impor-
tance should not be understated. Take the S&P global corporate rating pool as an example,
a corporate ceases to receive a rating due to at least two reasons. First, a corporate may
disappear simply because of a merger. Second, a corporate with a low credit rating may opt
out of rating because it no longer makes sense to pay for a service that explicitly reveals its
poor credit quality. In the case of internal rating system of a bank, other exits may reflect a
merger or simply a terminated borrowing relationship. The values of the these credit cycle
indices at various points of time are in our model the means to reflect the phase of a credit
cycle, and serve as the starting point for advancing the system forward into future periods.

We implement the credit rating migration model using a set of credit cycle indices (re-
flecting global and sectoral movements) similar to those of Duan and Miao (2015) where the
PD and POE (probability of other exits) data used in constructing these indices are taken



from the Credit Research Initiative (CRI) corporate PD database at the National University
of Singapore. The credit rating migration data used in our demonstration are the S&P long-
term global corporate issuer rating migration rates extracted from the European Securities
and Markets Authority (ESMA) database. The empirical results show that the S&P credit
rating migration can be sensibly captured by our model and used to generate informative
PIT-PDs or even TTC-PDs if needed. The forward PIT-PDs clearly exhibit a term structure
effect and are reflective of different phases of a credit cycle.

2 Credit cycle drivers and realized default/other-exit
rates

Consider a rating/scoring system that classifies the extant non-default obligors into K co-
horts with 1 being the highest credit quality and K the worst. In addition, defaulted obligors
are put into Cohort K + 1. Since some obligors may leave the pool for reasons other than
default, we must create Cohort K + 2 to accommodate other exits to ensure internal con-
sistency in rating migrations. The other-exit category captures those obligors becoming
unrated due to, say, a merger/acquisition, or a managerial decision to opt out of credit
rating, or a termination of the extant lending relationship initiated either by the lender or
borrower, depending on the nature of an obligor pool.

In practice, realized default/other-exit rates over, say one year, are typically compiled.
So, time series of the realized rates for different cohorts are readily available. In the case of
credit rating agencies such as S&P, Moody’s, etc., these rates are released to the public. More
often, such time series are guarded as proprietary information with access only granted to
in-house analysts. As expected, these cohort-specific rates will evolve over time in a dynamic
fashion reflecting different phases of a credit cycle. We denote the default and other-exit
rates for a static pool of obligors, say, Cohort k, over 7 periods from (¢t —7) to ¢ by D,(;t) and

O,(;t) , respectively, whose values are realized at time ¢. The credit cycle may be captured by
some indices.

2.1 Credit cycle indices and their dynamics

We adopt the credit cycle drivers similar to the approach of Duan and Miao (2015), who
used the CRI corporate PD database at the Risk Management Institute, National University
of Singapore to generate monthly time series of median values of the one-month PDs and
POEs (probabilities of other exits) for the global corporate and 10 industry sectors where
the sectors are set according to the Bloomberg Industry Classification System.? One cannot

2The CRI PD and POEs are based on the forward-intensity model of Duan, et al (2012). For the technical
details on how these PDs and POEs are computed, readers are referred to NUS-RMI Credit Research
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meaningfully capture credit cycles without explicitly factoring in corporate exits for rea-
sons other than defaults/bankruptcies. This becomes apparent by referring to Table 1 of
Duan, et al (2012) where other corporate exit rates are shown to be about ten times the
default /bankruptcy rates for US public firms.

Each pair of the credit cycle indices (PD and POE), being the global or one of the 10
industrial sectors, is assumed to follow a bivariate VAR(1) system with local momentum
where the local momentum feature is motivated by the model of Duan (2016). As our later
empirical results reveal, many of these credit cycle indices are indeed mean-reverting with
local momentum but globally stationary. We use the first pair, i.e., the global PD and POE
indices, to describe the bivariate system that is applicable to all other pairs. Note that the
credit cycle indices are typically available on a higher-frequency, and thus the running index
may be over subperiods of length s; for example, s = 1/6 when the credit cycle indices are on
the monthly frequency whereas the rating migration data runs on the semiannual frequency.

Denote the palr of the global credit c%/cle 1ndlces i.e., global medlan PD and POE, by
XOt and X()t . Let X&t) = Logit(X;,’) and XOt = Log@t(XOt ) where we apply the
Logit transformation because PDs and POES fall between 0 and 1. This pair of transformed
global credit cycle indices is assumed to follow the following dynamics:
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length ”0 or no . According to Duan (2016), a negative (positive) value of wéD) implies

that In X(()t exhlblts the local momentum building (preserving) feature while being globally

stationary.® Naturally, the same is true for Wo (©) and lnX .y is a 2-dimensional column

Initiative Technical Report Version: 2017 Update 1 in the reference list or see https://www.rmicri.org.
3 Although we use simple moving average to define local momentum, the model of Duan (2016) allows for
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vector and 3 is a 2 X 2 matrix. z—:(() t) and 5(() t) are assumed to be two normal random variables

with mean 0 and a covariance matrix €2y. In our later implementation, the transformed credit
cycle indices are standardized to have mean zero and variance 1, and therefore oy is set to
ZEro.

For the sectoral credit cycle indices, we again apply the Logit transformation, and then
orthogonize them individually on their corresponding standardized transformed global credit
cycle index. We denote the i-th sectoral pair of standardized, orthogonized and transformed
sectorial credit cycle indices by Xi(f) *and X i(’to)*.

Different from Duan and Miao (2015), we model the Logit-transformed median PDs
and POEs instead of performing their specific nonlinear transformation. In Duan and Miao
(2015), the transformed sectoral index pairs (PD and POE) are first orthogonized to the pair
of transformed global indices and then sequentially orthogonized to other sectoral index pairs.
For an easier interpretation of the sectoral indices, we only orthogonize each of the Logit-
transformed sectoral index pairs on the global pair without performing further sequential
orthogonizations. However, we allow correlated residuals across different pairs of sectoral
indices because the orthogonization is only applied on the global pair.

The model in equation (1) for the global or sectoral index pairs can be straightforwardly
estimated when n((]D) and néO) are known. But these moving window lengths are actually
unknown and need to be estimated. Thus, we resort to the density-tempered SMC method
as in, say, Del Moral, et al (2006) and Duan and Fulop (2015) to tackle the estimation
task. However, this estimation is treated as a likelihood maximization problem rather than
a Bayesian estimation with some prior belief. Our density-tempered SMC estimation is
similar to that of Duan and Wang (2016) where the SMC procedure is started with an
initialization sampler as opposed to a Bayesian prior distribution. The presence of the two
discrete unknown parameters are unique to our problem, however. In our initialization
sampler, n(()D) and n(()o) are treated as independent with equal probabilities from 2 to some
number large enough. As the SMC algorithm progresses, néD) and néo) will settle on a small
set of combinations with high likelihoods. We pick the (néD), néo)) combination that yields
the highest likelihood value. For statistical inference on other model parameters, we narrow
our focus on the SMC subsample corresponding the chosen (n(()D),néO)) combination and
performs the analysis like Duan and Wang (2016), which invokes a result of Chernozhukov
and Hong (2003) to justify the use of the SMC sample for asymptotic inference because the
information equality holds when the correctly specified likelihood function is the target.* For

the 10 sectoral pairs of credit cycle indices, we estimate the model in the same way.

any kind of weighted average. The parameter restriction needed for stationary of this bivariate system can
also be established along the line of Duan (2016).
4The SMC sample size will be increased to a level at which at least 1,000 parameter values are obtained



Table 1: Parameter estimates for each pair of credit cycle indices as in equation (1) with
standard errors in parentheses. «a; and ay are set to zero because the credit cycle indices
are demeaned. Only those with the 10% statistical significance are kept and the presented
results are re-estimated.

Industry sector nP)(months)  w(P) B11 B2 o1
Global 2 -0.6054  0.9590 -0.0251  0.1972
(0.1095) (0.0126) (0.0127)
Financial 8 -0.1033  0.9596 0.1824
(0.0318) (0.0108)
Basic Material 3 -0.1854  0.9468 0.2726
(0.0745)  (0.0151)
Communications 3 -0.3523  0.9360 0.2858
(0.0676)  (0.0173)
Consumer Cyclical 3 -0.2389  0.8849 -0.0584  0.3598
(0.0735) (0.0242) (0.0239)
Consumer Non-cyclical 2 0.9364 0.2914
(0.0165)
Diversified 24 -0.0726  0.7997 -0.0435  0.3959
(0.0187) (0.0260) (0.0232)
Energy 4 -0.1953  0.9508 0.2860
(0.0587)  (0.0169)
Industrial 2 0.9149 0.4053
(0.0238)
Technology 3 -0.2826  0.9300 0.3161
(0.0691) (0.0187)
Utilities 17 -0.0487  0.8981 -0.0572  0.3606
(0.0291) (0.0246) (0.0216)
Industry sector n(©) (months)  w(®) Ba1 Bao o P12
Global 3 -0.2348 0.9771 0.1439
(0.0700) (0.0085)
Financial 23 -0.0426 1 0.2165
(0.0230) (0.0151)
Basic Material 7 -0.1593 0.9672 0.1887
(0.0336) (0.0111)
Communications 2 0.9463 0.3181 0.1309
(0.0180) (0.0583)
Consumer Cyclical 2 -0.0422  0.9265 0.3231
(0.0217)  (0.0211)
Consumer Non-cyclical 2 0.0639 0.8928 0.3635
(0.0254)  (0.0251)
Diversified 14 -0.0644 0.9092 0.3358
(0.0306) (0.0227)
Energy 2 0.9434 0.3321
(0.0194)
Industrial 8 -0.0722  0.0318 0.9363 0.2861
(0.0386) (0.0169) (0.0182)
Technology 2 7 0.9760 0.2254 0.1765
(0.0128) (0.0554)
Utilities 5 -0.1862 0.8974 0.3608 0.1186

(0.0492) (0.0228) (0.0571)




The monthly time series of these 22 indices extracted from the CRI corporate PD database
of the National University of Singapore in November 2017, and the data covers the sample
period of December 1990 to December 2015, spanning a longer period than the S&P rating
migration data from the ESMA database which are available on a semiannual frequency and,
at the time of data extraction, spans the period from 2000 to 2015.

Table 1 contains the estimation results for the dynamics of these 22 credit cycle indices.
As expected, all 22 credit cycle indices are highly autocorrelated as reflected in either 511 or
[aa, whereas the cross correlations are weak as revealed by 15 or 82;. The local-momentum
effect is clearly present in both global PD and POE indices and it is the local-momentum
building type as defined in Duan (2016), meaning that the stochastic process likely continues
its recent upward or downward trend, because w?”) and w(©) are significantly negative. For
sectoral PD and POE indices, the results on local momentum are mixed with some estimates
of w being statistically insignificant. Among the significant ones, some are negative and
others are positive. When w is positive, it is considered to be the local-momentum preserving
type according to Duan (2016), suggesting that the stochastic process likely hovers around
its current level. Note that insignificant parameters at the 10% level are removed and the
model re-estimated.

Although estimates for p;o’s are available from the pair-wise estimation, we do not use
these correlations in the later application, because the residuals of the 22 series are allowed
to be correlated beyond just the pairwise correlation under the model in equation (1). Next,
we will elaborate on a practical way of estimating the overall correlation matrix of these 22
residuals while eliminating spurious correlations due to sampling errors.

We use a thresholding regularization procedure similar to Bickel and Levina (2008),
Rothman, et al (2009), Cai and Liu (2011), and Duan and Miao (2015). First note that
our task is simpler because the sample correlation matrix in our case is always positive
semidefinite arising from the fact that missing data does not occur in these credit cycle
indices. Thresholding is to apply a minimum magnitude, denoted by p,,, to correlations
so that correlations with a smaller magnitude are set to zero. We identify the optimal p,,
through cross-validation with L random splits of the sample into two subsets. For each

under the best (n(()D), n(()o)) combination. This is achieved by starting with an initial SMC sample of 1,000

parameter values and later increasing the SMC sample size to the desired level by applying the k-fold
duplication idea of Duan and Zhang (2016), which can avoid going through the density-tempering steps.
The sample standard deviation for each parameter is then computed. Different from Duan and Wang
(2016), however, we use the maximum likelihood estimator produced by the SMC procedure. To increase
the precision of the SMC maximum likelihood estimate, we apply data cloning in the spirit of Lele, et al
(2007) and Lele, et al (2010) to raise the power of the likelihood function (doubling each time) until the
SMC maximum likelihood value is stabilized to the point where its log value can no longer be increased by
more than 0.01.



random split, the data matrix, say, Z, is divided into the training set Z; and the validation
set Zs, where the sample sizes (T} and T3) are determined by To = T/ In(T) and Ty = T —T.
For the [-th split, 25’3 ! denotes the resulting correlation matrix after applying thresholding
to the sample correlation matrix computed from the training dataset, whereas ig) is the
sample correlation matrix based on the validation data set. The best threshold value, p;,, is
the solution to the following problem:

2

pm=>0 L F

L
1 . .
pr, = argmin — Z Hngm’l) — Eg)
=1
where || - || stands for the Frobenius norm. We set L = 10 in our later implementation.
The correlation matrix for the 22 residuals estimated with the thresholding technique is not
presented in the paper to conserve space.

2.2 Linking default/other-exit rates to credit cycle drivers

Let Xt(D) be the 11-dimensional row vector containing the PD-based credit cycle indices
without the Logit transformation.® All sectoral credit cycle indices are again orthogonized
on the global index. Similarly, Xt(o) be the 11-dimensional row vector containing the POE-
based credit cycle indices. We assume that one-period default and other-exit rates can be

modeled by the following Tobit model: for k=1,2,--- K andt=1,2,---,

DY) if0< DY) <1

Dy} = 0 i DY) <0 (2)
1 it D{\) > 1
1/s—1
where D,ilz* = app+ Z Xff)])s Bp.k+ €Dkt
=0

and

oy ifo<of) <1
o) = 0 o) <0 (3)
1 o) >1

1/s5—1
where O,ilz* = aox+ Z Xt(_oj)s Bo,k + €0 k-

j=0

5We do not Logit-transform the credit cycle indices because the realized default rates used as the depen-
dent variable in the Tobit regression cannot be likewise transformed due to the presence of zero.



Note that Bpx = (Bpk1,- - ,Bpryp) is the 11-dimensional regression coefficients, and ep
is a normally distributed innovation term with mean 0 and standard deviation op . Bo  and
€0,k are similarly defined. For the interpretability of Bp and Bop across different rating
cohorts, we have standardized all explanatory variables in the Tobit regression to have mean
0 and variance 1. epy: and €py, are assumed to be independent over time, but may be
contemporaneously correlated. The regressors are the sums over 1/s subperiods in order to
accommodate a likely mixed-frequency situation in practice where, say, the credit risk cycle
drivers are available monthly but the realized default and other-exit rates are semiannual so
that s = 1/6. The default/other-exit rates realized over a 6-month period would not have
been well captured by the credit risk cycle variables if one had only focussed on their period
end values. We adopt a Tobit model because a high credit quality cohort often experiences
zero realized default rates. When a time series for a cohort contains too many zero default
rates, there may create an identification problem. Merging into another cohort or finding

a sensible proxy time series seems to be a sensible option. The latter is adopted in our
implementation for the AAA, AA, A and BBB cohorts of the S&P ratings.

We extract realized default and other-exit rates from the ESMA database on the S&P
long-term corporate issuer ratings, which at the time of extraction spans the period from
2000 to 2015. Data up to the semiannual frequency are available, and we consider seven
rating cohorts (AAA, AA, A, BBB, BB, B, and CCC/CC/C) before default or other exits.
The default rate is directly available from the ESMA database, but the other-exit rate is
deduced by one minus the sum of the default rate and the migration rates for the seven
rating cohorts.”

Semiannual default rates for each of the three rating cohorts (BB, B, and CCC/CC/C)
are regressed on the 11 PD-based credit cycle indices where the indices are sampled monthly
but averaged semiannually to match the frequency of the dependent variable. For the top
four credit quality cohorts (AAA, AA, A and BBB), the time series of semiannual realized
default rates are either all zeros or contain too few non-zeros, and thus running a Tobit
reqression on these series would be meaningless. For these rating cohorts, we apply four
proxy time series that are the median model PDs extracted from the CRI corporate PD
database, where the comparable AAA, AA, A and BBB categories are determined by a PD-
implied rating method which essentially determines a set of boundary PD values for different
rating categories so as to map the CRI PDs for the global corporate pool of over 68,000 firms
to the S&P historical average default rates.® We create these proxy series with the following

8Censoring above at 1 is not a practical concern, and so we have ignored it in implementation.

"The ESMA database reports separately the CCC, CC and C categories, but we follow the S&P 2014
report, “Annual Global Corporate Default Study and Rating Transitions,” to combine these three categories
into one.

8For technical details, please refer to the PDiR methodology in “Probability of Default implied Rating
(PDiR) White Paper,” 2018, the Credit Research Initiative, National University of Singapore.
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three steps: (1) identify the group of obligors belonging to a rating cohort, say, AA six
months prior to time ¢ according to the PDiR methodology, (2) add up six one-month PDs
leading to time ¢ for each obligor, i.e., t — %, R %,t,g and (3) obtain the median PD
value of the group and use it as a proxy value for the rating cohort.

For semiannual other-exit rates, a similar regression on the 11 POE-based credit cycle
indices is run for each cohort. Since the other-exit rate series for any cohort always contains
many non-zeros, there is no need to find a proxy time series for any rating cohort.

The Tobit regression is estimated with the adaptive Lasso penalty to avoid over-fitting
due to too many regressors. We choose to incorporate the adaptive Lasso penalty by Zou
(2006) into the Tobit regression because the adaptive Lasso retains the oracle property.
When coupled with with the convexity formulation of Tobit model by Olsen (1978), the
estimation remains to be a convex minimization problem for which a unique global solution
exists. The suitable level of penalty, i.e., the tuning parameter, is determined by the BIC
criterion.

The Tobit model estimation results are summarized in Table 2. Evidently, realized default
rates in all cohorts (or their proxy values for the AAA, AA, A and BBB cohorts explained
earlier) are positively related to the global credit cycle PD index as reflected by the results in
Panel A. For some cohorts, the results show that they are also related to some sectoral credit
cycle PD indices. Note that some coefficients are negative because the sectoral credit cycle
indices have been orthogonalized to the global credit cycle index. The explanatory powers
indicated by R? of the Tobit regression are computed from the residual variances using the
two expected values under the Tobit model with and without regressors. The lowest R?
is about 57% corresponding to the CCC/CC/C category, whereas the largest explanatory
power is at 85.6% for the B rating cohort. These results are quite intuitive, and suggest
that the Tobit model works fairly well in relating the default experience to the credit cycle
indices.

The Tobit regression results for the other-exit rates show a quite different pattern. The
AA cohort’s other-exit rate responds to the global and all sectoral POE credit cycle indices
with a very high R? (a bit over 60%), but other cohorts, particularly those riskier categories,
do not respond to POE credit cycle indices at all. We contend that this is expected be-
cause the reason for not getting a S&P rating for better rated cohorts has more to do with
merger/acquisition activities. For firms below the investment grade, there is no incentive to
pay for a credit rating that actually reveals one’s poor credit quality.

9The defaulters during the six-month period are assigned a PD of 1 and those experienced other exits are
given a PD of 0.
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Table 2: Summary of the Tobit regressions for default and other-exit rates of different
rating cohorts (with the adaptive Lasso regularization and the BIC selection of the tuning

parameter)

Panel A. Defaults

Industry sector AAA AA A BBB BB B cccey/ee/c

Constant 2.01x1076%  3.25x107° 0.0001 0.0006 0.0015 0.0159 0.1653

Global 5.85x10~7  5.52x107%  2.42x1075 0.0001  0.0007 0.0131 0.0518

Financial 5.19x10~7 -0.0003  0.0092

Basic Material -2.00x107 0.0027

Communications -1.62x107° 0.0034  0.0133

Consumer Cyclical 2.73x107%  1.97x107° 0.0135

Consumer Non-cyclical 0.0017

Diversified 2.13x107° 0.0022  0.0137 0.0147

Energy -1.36x107°

Industrial -8.17x107°

Technology -0.0030

Utilities 2.53x1077  8.11x107%  4.14x107° 0.0001 -0.0012 0.0136

R? 0.6215 0.8079 0.7985 0.6181 0.6858  0.8560 0.5706
Panel B. Other Exits

Industry sector AAA AA A BBB BB B cccey/ee/c

Constant 0.0032 0.0208 0.0250 0.0342  0.0473  0.0509 0.0604

Global 0.0054

Basic Material -0.0077 -0.0031

Consumer Cyclical 0.0066

Diversified 0.0082 0.0055 0.0052

Energy 0.0050

R? 0.3760 0.6012 0.2222 0.0000  0.0000  0.0000 0.0000

Note: Only present the coefficients chosen by the adaptive Lasso.
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3 Dynamic Point-in-Time rating migration matrices

The rating migration among the (K + 2) categories from time ¢ to ¢ 4+ 7 is driven by a
(K +2) x (K + 2) time-dependent transition probability matrix, which is a conditional
expectation at time ¢ of future migrations driven by stochastic one-period default and other-
exit rates, which are in large part determined by by how they react to the credit cycle

indices, X(D) and X(O) over the period of t tot+ 7. Let D(»l) = max (0 D(-l») — ) if Dw

is a proxy time series, and otherwise D D( ) Inevitably, one would have to use proxy
time series to replace the realized default rates for some high credit quality cohorts, because
their realized default rates are typically zeros. In our empirical implementation on the S&P
rating migration, top four rating categories use proxy time series. Applying the Tobit model
to generate default rates will naturally cause upward bias in these cases. Therefore, an
adjustment parameter, n;, is introduced into D ) whenever a proxy time series is used. This
newly introduced parameter 7; is set equal to the difference between the sample means of
the proxy and realized default rate series. Omne naturally expects a positive 7; because a
proxy series is used only when the realized default rates are mostly zeros.

= E; ( ﬁ Ril,i) (4)

i=t+1

Our specific construction is

where R;_; ; is defined as

[ 1 1 1 1 1 1 P ol
qn(Dg,z’)’ Og,i)) qu(Dii)’ Og,i)) T ‘hK(Dg,i)? Og,i)) max(1 D(li>+0<1)) max(l Dzi)ﬁ-o(l)
1,2 71,4 1,7
(1) (1)
1) A1) 1) AW 1) A ] of)
¢21(Da; 03;)  422(Daf 0z5) ++ qer(Day, 0s;) max(l,D?Z) +0§!)) max(l,szf +04)))
(1) A1) (1) (1) (1) A1) D, o)
ar1(Dicir Orcs) 2(Dicii O+ e (Dicy Ocy) max(1,Df,+05;)  max (1,05, +05))
0 0 e 0 1 0
i 0 0 cee 0 0 1

The default and other exit rates in the last two columns are adjusted in a way to ensure
the sum of the two entries not exceeding 1. Without the adjustment, R, _;; need not be a
legitimate stochastic migration matrix because the Tobit model can generate with a positive
probability default and other exit rates with their sum exceeding 1. The entries in the second
to the last row of R;_;;, i.e., corresponding to the category of defaulters, are fairly obvious,
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but the last row requires explanation. When tracking a static pool of obligors over some
horizon of interest, there are no new entries into any one of the first K cohorts, and thus
those transition probabilities should equal zeros by definition. This is precisely the migration
matrix needed for determining the PIT-PDs facing the existing obligors. This is also the
migration matrix appropriate for generating expected default rates, over multiple periods,
faced by a fixed set of obligors in any of the K cohorts. The migration matrix can in turn be
used in parameter estimation to center observed realized default rates at their corresponding
theoretical default rates.

In order to define qjk(D§-}i),O§}i)) for j =1,--- K and k = 1,--- | K, we let Q;_1;
denote them, which is the top-left k x k submatrix of R;_;;. The following rather general
specification is adopted:

Qi1 = diag (N) { A - esp |diag (D!"") B|} (6)
where diag(-) denotes the operator of making a column vector into a diagonal matrix, “” is
an element-by-element multiplication of two matrices (i.e., the Hadamard product), exp(-)

— — _ !/
stands for an element-by-element exponentiation, Dgl)* = [D&-) / D%l), Dgi) / Dgl), s Dg)z / Dg)]

with D](-l) denoting the historical sample average of DJ(»}i) > 0 for cohort j, which is used
to scale default rates to make them comparable in magnitude across cohorts. IN; is a K-
1— [(ﬁ;}2+0§}2>/max(l,Dfi)JrO;_li)

dimensional column vector with element j equal to Fonsum, {A.e)&p [diag <D§1>*)B]} , and finally

A and B are as follows:

1 Q12 - MK 0 b12 e ik
a_ a'21 1 CL2'K B_ —3'321 0 coo bop
ag1 agz -1 —bg1 —bgs -+ 0

The prior belief structure on A and B is captured by an indicator function 14 g) with
its value equal to 1 to indicate that the prior belief is satisfied by A and B and 0 otherwise.
Specifically, the prior belief structure on A is a;; > a;, > O0for k > 7 > i and 0 < a;; < a;; for
k < j <1 because the migration probabilities should not be negative and their magnitudes
should decline away from the diagonal. The prior belief structure on B is b;; > by, > 0 for
k>j>idiand 0 < by, < b;; for k < j < i to reflect the intuition that a higher (lower)
default rate is expected to be associated with higher migration rates to lower (higher) rating
categories so that parameter values to the right (left) of the diagonal need to be positive
(negative). The diagonals of A and B are with the assigned values for the identification
purpose, because an arbitrary diagonal in A could yield an exactly same outcome through a
compensating adjustment in IV;. Likewise, the diagonal of B is set to zero because adding
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an arbitrary constant to any row would yield the same outcome again by a compensating
adjustment in IN;. Note that when a;; is set to 0, its corresponding value for bj; naturally
becomes irrelevant and can be set to 0 for convenience.

It is straightforward to verify that all qjk(Dﬁ}i), 03(12)) in the above formulation are non-

. K 1) A1) b0l .

negative and ) ", qn(D;;, 0;/) + maX(LD;}HO;?) =1forj=1,2-,K, and therefore
R;_,; is a legitimate stochastic rating migration matrix that responds to changes in the
realized default rates for different cohorts. The above specification is motivated by a combi-
nation of definition and intuition. The to-be-realized default rate of a cohort is, by definition,
the fraction of the obligors in this cohort that jump to default over the coming period. Sim-
ilarly, this applies to the to-be-realized other-exit rate. For migration to other cohorts, the
default rates over the coming period are not directly tied to their migration probabilities,
but are likely informative; for example, a higher (lower) to-be-realized default rate intu-
itively suggests that a higher fraction of obligors in a cohort are expected to migrate to next
cohort indicated by a lower (higher) credit quality. One would expect a higher migration
probability in either direction for moving one cohort than two, which can be reflected in the
magnitude of bj; being decreasing further away from the diagonal. The above stochastic
migration matrix contains at most 2(K — 1)? unknown parameters in A and B, and they
are subject to such a prior belief structure.

When the modeling situation warrants, migration possibilities can be reduced to, say, at
most two cohorts over one period, which can be easily accomplished by setting to zero all
entries beyond two levels off the diagonals of A in either direction. Since users may want to
limit the number of parameters immediately off the diagonal of A and B, we define the left
and right index limits: k;(j) = min(j — k*,1) and k,.(j) = max(j + k*, K) for row j where
k* is the maximum number allowed. When k* = 2 for example, estimation is to use the
following A and B:

1 19 Q13 0 0 0 0 0 bl2 bl 3 0 0 0
921 1 923 Q924 0 0 0 —b21 0 b23 b24 0 0
az; azxp 1 azy az 0O 0 —b31  —bszy 0 b4 bss 0
A= 0 agp a3z 1 ays age O B = 0 —bso  —bus 0 bas bag
0 0 as3 asa 1 ase asy 0 0  —bs3 —bsy O bse
0 0 0 Qgqa Qgs 1 Qg7 0 0 0 —b64 — b65 0
| 0 0 0 0 Qrs Qg 1 ] L 0 0 0 0 —b75 —b76

Dynamic S;(7) defined in equation (4) can be computed concurrently by Monte Carlo
simulations for all cohorts using the values at time t for Xt(D), Xt(o), D,S) and O,E}t) for
k=1,2,---, K. The system defined in equations (1)-(3) can be used to generate future paths
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of Xt(D) and Xt(o), and then D,(glt) and Olilg for k = 1,2,---, K, which in turn determines
Ri—l,i fOI'Z:t—l—l,t—l—Z, ,t+7'.

Note that future values of Xt(D) and Xt(o) are simulated at a higher frequency, say,
monthly, whereas those of D,(:z and Ogt) for k =1,2,--- , K are generated, say, semiannually.
Repeat the simulation, say, 100 times and compute the average of the stochastic matrix,
H';;TH R; ,;, for each of targeted 7 to arrive an Monte Carlo estimate of Sy(7).1°

Note that when a proxy series is used, the value of 7 has already been determined based
on the difference between sample means of the proxy and realized default rate series. One can
utilize recorded realized rating migration matrix over horizon [t,t + 7;] denoted by M, (7;)
for i = 1,2,---,m. M,(r;) should be understood as a K x (K + 2) matrix, recording
migration rates from K rating cohorts to K + 2 outcomes (K rating cohorts plus the default
and other-exit categories). Perform a nonlinear least squares estimation by pairing M;(T;)
with the corresponding K x (K + 2) submatrix of S;(7;) over the sample period. If only
some entries of My(7;) are available, say, realized default rate (i.e., the (K + 1)-th column of
M, (7;)), estimation can just focus on comparing the values in this column. In the following
exposition, we assume the whole matrix is available.

Estimation is to maximize the following pseudo-likelihood function:

La,B)
L(A, B, %(1),%(2),--- ,4(m); Drx) = —
AB DR ) = o e T T )

. K K41 (Mt(k’l)(n) — St(k’l)(Tz';AaB))z
Z 2¢3,(4) g

subject to ¥y (i) >0 fori=1,2,--- . m, k=1,2,--- K, andl=1,2,--- K +1

In the above, Di.r denotes the data set from time 1 to 7', which comprises M;(7;) for
t=1,2,--- ,Tandi=1,2,--- ;m. A and B are added to S;(7;) to emphasize dependency
on A and B. The superscript (k,[) is used to indicate an element of S;(7;; A, B) and
M,(7;). Note that we only run the index up to K + 1 because by definition any row sum
of either S;(7;; A, B) or M,(7;) equals 1, which naturally removes one degree of freedom.
The nonlinear regression errors can potentially be captured by (i), a K x (K + 1) matrix
of parameters for horizon 7;. However, that could be excessively general for practical usage,
and we thus adopt a more restricted but sensible form in the later application.

0We found that 100 simulated paths sufficient for the estimation of A and B using the S&P credit
migration data, but one may need to use more simulation paths in order to obtain smoother estimates of
S;(7) for certain applications.
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Although S;(7;; A, B) is computed by Monte Carlo simulation, the likelihood function
can be differentiable in parameters in A and B if common random numbers are used in
evaluating the pseudo-likelihood function when the parameter value is varied. A gradient-
based optimization method can in principle be deployed to perform this nonlinear least
squares estimation. Due to a large number of parameters and the prior belief structure, we
again resort to the density-tempered SMC method to tackle the estimation task. When A
and B are known, the optimal @ can be analytically solved. Hence, the SMC algorithm is
implemented to take advantage of this feature. The statistical inference in this case is more
complicated, because the pseudo-likelihood function in equation (7) is created by making
predictions at a time point over several overlapping horizons. In short, the information
equality as described in Chernozhukov and Hong (2003) no longer holds to justify a direct
use of the SMC sample to perform inference. Thus, we take the SMC sample means as
the pseudo maximum likelihood estimates and deploy the self-normalized approach of Shao
(2010) to generate their standard errors.

The semiannual time series of M, (7;) for the S&P ratings are extracted from the ESMA
database for six horizons (7 equals 6 months, 1 year, 2 years, 3 years, 4 years and 5 years)
and seven rating cohorts. We adopt the following restricted error structure, which recognizes
that the diagonal values are supposed to be larger than others, the off-diagonal values become
smaller further away from the diagonal, and the default rates in column eight are cohort-
specific except for the top three rating categories.

V(1) ha(1) Yus(1) Yis(7) (1) 1/113(7) Pi3(1) is(7)

2(7') Z/111(7') ¢12(7') ¢13(T) 3(7') 3(7') 3(7') ¢18(T)

Yis(7) Y12(7) Pu(7) via(7) Yis(r) ¥is(7) Yis(m) is(7)

W(T)ixs = | ¥Y13(7) Y1s(7) Yia(7) (7)) tia(r) i) is(r) tus(7)
Yia(1) Pi3(7) Uis(7) ia(7) (1) ¥ia(r) Yis(7) Pss(T)

Pu3(7) is(7) Pis(7) Yus(1) Yia(7) () Yia(1) Yes(7)

1/)13(7') Yi3(7) his(1) Yus(1) Yis(7) ra(1) Yu(r) rs(7)

With seven rating cohorts, the total number of free parameters in A and B equals 44.
Adding the 8 parameters in 9 for each of six horizons (restricting AAA, AA, and A cohorts
to share the same regression error on column eight) yields a grand total of 92 unknown
parameters.

The estimated coefficient matrices A and B based on the semiannual frequency are
presented in Table 3 with their standard errors in parentheses. These estimates obey the
prior belief structure in a natural way, meaning that immediately off-diagonal elements are
larger in magnitude, suggesting migration to the nearest cohort is not only more likely (A
matrix) but also more sensitive to the realized default rate (B matrix), and none of them
hitting the boundary conditions implied by the prior belief structure. Also presented in
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Table 3: Estimated parameters for the dynamic point-in-time rating migration matrices

A cl c2 c3 c4 ch cb c7
rl 1 0.1131 0.0003 0 0 0 0
(0.0019) (0.0009)
r2  0.0046 1 0.0472 0.0031 0 0 0
(0.0004) (0.0032) (0.0002)
r3  0.0013 0.0015 1 0.0192 0.0030 0 0
(0.0001)  (0.0001) (0.0025)  (0.0001)
r4 0 0.0006 0.0187 1 0.0106 0.0028 0
(0.0001) (0.0011) (0.0024)  (0.0003)
r5 0 0 0.000770194  0.0276 1 0.0419 0.0033
(0.0001) (0.0011) (0.0014)  (0.0003)
r6 0 0 0 0.0016 0.0246 1 0.0290
(0.0001) (0.0014) (0.0044)
r7 0 0 0 0 0.0011 0.1066 1
(0.0003)  (0.0089)
B cl c2 c3 c4 cH cb c7
rl 0 0.3226 0.2676 0 0 0 0
(0.0550) (0.0512)
r2  -0.1807 0 0.0569 0.0064 0 0 0
(0.0185) (0.0448) (0.0037)
r3 -0.1123  -4.5374 0 0.3650 0.2835 0 0
(0.0332) (0.1852) (0.1157)  (0.0876)
r4 0 -0.1294 -0.2478 0 0.4276 0.0199 0
(0.1134) (0.3025) (0.0534) (0.0627)
r5 0 0 -0.0569 -0.3216 0 0.1172 0.0063
(0.0489) (0.0992) (0.0309) (0.0249)
r6 0 0 0 -0.0171  -0.8305 0 0.3469
(0.0146)  (0.0963) (0.0397)
r7 0 0 0 0 -0.6088  -0.6393 0

(0.1610)  (0.1590)

P(T) P11 P12 P13 P18 P4 P58 (S P78

7=05y 0.0623 00408 00021  0.0004 0.0011  0.0023 00162  0.0676
(0.0022) (0.0018) (0.0001) (0.0000) (0.0001) (0.0001) (0.0006) (0.0033)
r=1y 00809  0.0533 00039  0.0007 0.0024  0.0080  0.0399  0.0807
(0.0029)  (0.0025) (0.0001) (0.0000) (0.0001) (0.0005) (0.0021) (0.0031)
T=2y 00947 00617 00102  0.0018  0.0065  0.0224  0.0729  0.1032
(0.0052)  (0.0041) (0.0005) (0.0001) (0.0005) (0.0008) (0.0037) (0.0026)
7=3y 00941 00650 00127 0.0034 00103  0.0329  0.0901  0.1101
(0.0072)  (0.0059) (0.0008) (0.0003) (0.0008) (0.0009) (0.0053) (0.0029)
=4y  0.0894  0.0653 00152  0.0048  0.0123  0.0361  0.0948  0.1166
(0.0064)  (0.0064) (0.0008) (0.0005) (0.0010) (0.0013) (0.0058) (0.0048)
T=>5y 0078 00643 00187  0.0059  0.0130  0.0375  0.0942  0.1227
(0.0064) (0.0068) (0.0012) (0.0008) (0.0010) (0.0022) (0.0071) (0.0064)
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Table 3 is 9 matrix. The estimates are consistent with the intuition that the model error
becomes larger for a migration over a longer period, i.e., increasing 7.

4 Forward Migration Generators, and Point-in-Time
and Through-the-Cycle PDs

Recall that Sy(7;) is the spot PIT 7-period rating migration matrix at time ¢, and its (K +
1)-th column provides the corresponding spot PIT-PDs for different cohorts. Our model
estimated with rating migration matrices measured over horizons from 6 months to 5 years
only provide values for S;(7;) at ¢ = 1,2,---, with each 7; increased by 6 months. Because
S;(7;) constitutes a set of legitimate rating migration matrices, there exists an obvious way to
interpolate/extrapolate through creating a set of corresponding forward migration generators
at time t. Denote these forward generator matrices by {Fi(7), Fi(71),---} where 75 = 0.
We can define the extended S;(7) for all horizons in continuous time with these forward
migration generators as follows: for 7 > 0 and 7,,, < 7 < 741,

(H expy [(1; — 1i1) Fy(Tie 1)]) expy (7 — 7o) Fy (7)) (8)

In the above, expy,(-) denotes the matrix exponential operator. Since Fy(7;)’s are not sym-
metric matrices, their multiplication is not commutative and the order of the multiplication
must be respected. The forward generators are easily solvable sequentially over 7,7, -
with the matrix logarithm operator built in programming languages such as Matlab, Julia,
etc. With these forward migration generators, one in essence turns the originally discrete-
time model at a semiannual frequency, i.e., Sy(7;),7 = 1,2, -+ into a continuous-time model,
with which complex debt tenor structures facing financial institutions can be conveniently
handled.

The forward PIT-PD for an obligor in rating cohort £ at time ¢ and forward-starting at
time ¢ + 7 with a prediction horizon of s, denoted by f;(7; s, k), should be understood as the
conditional PD by presuming that the obligor has survived the period of ¢ to ¢t + 7. Note
that any defaultable obligor’s forward PD would eventuall (y approach zero by definition if
the survival probability were not factored in. Recall that S, ) ) denotes the (k,7) element
of matrix Sy(7). The following is a simple expression for any forward PIT-PD applicable to
all rating cohorts:

S 4 5) - S ()

_ 9
S 8 (r) )

fi(r;s,k) =
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Figure 1: Forward PIT 1-year PDs at the end of December 2008 for BBB and B cohorts for
various forward starting times

3000 60
- 58
2500
w
o
= - 56
g
- 2000
.
o
= - 54
—
o
(N
1500
- 52
B (left axis)
= = = BHB (right axis)
10'30 T T T T T T T T T T T 50

200, 23 200, 13, 200g,, 303 ‘)00994 o '?00905 0 ‘?0090500, 200, 205 20099853 200909 0s 200, 00 200g, log 2099130;
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The forward PIT-PDs implied by our model exhibit a term structure effect much like
forward interest rates, and this can be clearly seen in Figures 1 and 2 where 6-month PDs
for the BBB and B rating cohorts for a range of forward starting times up to five years are
plotted for two time points (December 2008 and December 2015). Note that the forward
1-year PDs for the B rating are referenced to the left vertical axis whereas those for the BBB
rating use the right one. Not at all surprising is to find the forward PDs both either rating
category are much higher for December 2008 right after the Lehman Brothers’ bankruptcy
vis-a-vis December 2015 after the credit market has calmed down. The forward PD term
structures are complicated with a hump shape for the B rating in December 2008, suggesting
further heightening of credit risk for some time to come before eventually calming down, but
for the BBB rating, the opposite is true. However in December 2015, the forward PD curve
for the B rating has turned from hump-shaped into upward sloping all the way to five years,
pointing to higher future credit risks.

A credit cycle is defined as over N periods, which may, for example, be regarded as 10
years. The TTC 7-period rating migration matrix at time ¢ can be understood as S;(7, N) =
~ SN Ey[Siyio1(7)], which is an average over time of expected future spot PIT migration
matrices. The (K + 1)-th column of S;(7, N) provides the corresponding TTC-PDs for
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Figure 2: Forward PIT 1-year PDs at the end of December 2015 for BBB and B cohorts for
various forward starting times
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different cohorts. The TTC-PDs are time-varying to reflect the phase of a credit cycle, but
the variations are expected to be smaller due to averaging over the credit cycle. Without
a theoretical model, the TTC-PDs are often approximated by the total count of one-year
transition from one particular cohort to another divided the total sum of the obligors in the
starting cohort over, say, 10 years. Alternatively, one can simply ignore the variation in the
number of obligors over differ rating cohorts and over time to just adopt the average T-period
realized default rate computed over, say, 10 years.

We consider a theoretical TTC 1-year credit rating migration based on a 10-year cycle;
that is S’t(l, 10) where ten non-overlapping 1-year rating migration matrices are averaged to
correspond to a 10-year cycle. This theoretical TTC 1-year migration matrix at an evaluation
time is forward-looking and computable to any degree of accuracy (increasing the number
of simulation paths). We compare them with the backward-looking TTC 1-year migration
matrix computed per usual, which is the total count of 1-year transition from one particular
cohort to another divided the total sum of the obligors for that starting cohort over the
10-year period immediately prior to the evaluation time.

Table 4 provides a comparison of TTC (10-year cycle) 1-year PDs for all seven S&P
rating cohorts under the forward-looking model and backward-looking historical average in
December 2008 and December 2015, respectively. Evidently from these results, the forward-
looking and backward-looking TTC-PDs are quite different particularly for the lower credit
quality categories, and the differences are more pronounced in December 2008 when the
credit cycle was at around its peak vs. December 2015 when credit risk had subsided. In
order to see the effect due to the length of a credit cycle, we conduct the same comparison
except for shortening the presumed cycle length to 5 years. The results in Table 4 show
clearly that the differences between the forward-looking and backward-looking TTC-PDs
become much larger, a result that can be anticipated because the averaging effect becomes
weaker when the cycle length is shortened.
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