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Jump Starting GARCH:

Pricing and Hedging Options with Jumps in Returns and Volatilities

ABSTRACT

This paper considers the pricing of options when there are jumps in the pricing kernel and
correlated jumps in asset returns and volatilities. Our model nests Duan’s GARCH option
models where conditional returns are constrained to being normal, as well as extends Merton’s
jump-diffusion model by allowing return volatility to exhibit GARCH-like behavior. Empirical
analysis on the S&P 500 index returns reveals that the incorporation of jumps in returns and
volatilities improves significantly the performance of the GARCH model in capturing the ob-
served time series of the S&P 500 index returns. Moreover, the corresponding GARCH option
pricing model with the jump component delivers a better performance on pricing the S&P 500
index options.

(GARCH, options, stochastic volatility, jumps)



In this paper we introduce a new family of GARCH models driven by compound Poisson
innovations and derive the corresponding option pricing theory. Because the compound Poisson
innovations are analogous to the increments in a continuous-time compound Poisson process, we
refer to this new class as the GARCH-Jump model. These discrete-time processes are of interest
since the conditional returns of the underlying asset allow levels of skewness and kurtosis to
be matched to the data and option prices can readily be priced in a way to reflect changing
volatility and jumps in both returns and volatilities. This GARCH-Jump option pricing model
is a natural generalization of the typical GARCH option pricing models with normal innovations,
a pricing approach originated in Duan (1995). We empirically test the model, and show that
it fits the return data better than the traditional GARCH model with normal innovations and
outperforms the inverse Gaussian GARCH model recently proposed by Christoffersen, Heston
and Jacobs (2006) (CHJ). Moreover, our model is better in removing more of the biases in option
prices.

Just as the binomial model serves as a discrete-time approximation for many underlying
diffusion processes, the class of GARCH-Jump models can serve as discrete-time approxima-
tions for an array of continuous-time jump diffusion models. As shown in Duan, Ritchken
and Sun (2006), a variety of continuous-time limiting models can in fact be derived using our
GARCH-Jump processes; for example, (1) when the GARCH feature is disabled but jumps al-
lowed, the limiting model nests the jump-diffusion model of Merton (1976), (2) when jumps are
suppressed, the limiting model can be made to converge to continuous-time stochastic volatil-
ity models, including Heston (1993), Hull and White (1987) and Scott (1987), among others,
and (3) when jumps are permitted, the limiting models contain jumps and diffusive elements in
both returns and volatilities, along the lines of Eraker, Johannes and Polson (2003) and Duffie,
Singleton and Pan (1999).

Furthermore, just as the appropriately defined binomial model provides a useful mechanism
for pricing American style options under the geometric Brownian motion assumption, our appro-
priately defined risk neutralized discrete-time GARCH models provide a mechanism for pricing
options when returns and/or volatilities experience random jumps. The option theoretical re-
sults developed in this paper has in fact been utilized by Duan, Ritchken and Sun (2006) to
derive the limiting option pricing models.

This paper contributes to the literature in three aspects. First, we propose a new class of
GARCH models based on compound Poisson innovations and establish the discrete-time option
pricing theory which allows us to price derivatives when the underlying asset’s innovations may
be far from normal and when volatility is stochastic. This is important because our approach
offers a unique GARCH option model with non-normal innovations that can be naturally linked
to stochastic volatility model with jumps.1 Second, we conduct an empirical analysis to demon-

1We know of three alternative ways of introducing non-normal innovations into the GARCH option pricing
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strate the importance of incorporating jumps in returns and volatilities so as to better capture
kurtosis and skewness in the time series return dynamics. Third, we employ a more compre-
hensive approach to estimating parameters and comparing the performance of different option
models, that incorporates both the time series of asset returns as well as the cross section of
option prices.

Why is it important to incorporate jumps in volatility? Empirical research has shown that
models which describe returns by a jump-diffusion process with volatility being characterized by
a correlated diffusive stochastic process are incapable of capturing empirical features of equity
index returns or option prices. For example, both Bates (2000) and Pan (2002) argue for
volatility-jump models because implied volatilities move too abruptly for a diffusion.2 While
jumps in the return process can explain large daily shocks, these return shocks are highly
transient and have no lasting effect on future returns. At the same time, with volatility being
diffusive, changes occur gradually and with high persistence. These models are unlikely to
generate clustering of large returns associated with temporarily high levels of volatility, a feature
that is displayed by the data. Both of the above authors recommended considering models with
jumps in volatility. Eraker, Johannes and Polson (2003) examined the jump in volatility models
proposed by Duffie, Singleton and Pan (1999), and showed that the addition of jumps in volatility
provide a significant improvement to explaining the returns data on the S&P 500 and Nasdaq 100
index returns. In contrast, Eraker (2004) estimated parameters using the time series of returns
together with the panel of option data, using methodology similar to Chernov and Ghysels (2000)
and Pan (2002). He confirmed that the time series of returns was better described with a jump
in volatility. Surprisingly, however, the model did not provide significantly better fits to option
prices beyond the basic stochastic volatility model.

The GARCH model has been extensively used in studying return time series. In recent years,
there has been an increasing use of the GARCH option pricing model to empirically examine its
pricing performance. Heynen, Kemna and Vorst (1994), Duan (1996), Hardle and Hafner (2000),
Heston and Nandi (2000), Duan and Zhang (2001), Lehar, Scheicher and Schittenkopf (2002),
Lehnert (2003), Stentoft (2005) and Hsieh and Ritchken (2005), are some examples. Christof-
fersen and Jacobs (2004) examined a set of GARCH option models using the more general

model. Duan (1999,2002) developed two versions of the GARCH option model allowing for conditional skewness

and kurtosis via a normal transformation technique and the entropy principle, respectively. Christoffersen, Heston,

and Jacobs (2006) developed a GARCH option pricing model using inverse Gaussian innovations.
2Stochastic volatility option models have been considered by Hull and White (1987), Heston (1993),

Nandi (1998), Scott (1987), among others. Bakshi, Cao and Chen (1997) provided empirical tests of alterna-

tive option models, none of which contain jumps in volatility. Naik (1993) considered a regime switching model

where volatility can jump. For additional regime switching models, see Duan, Popova and Ritchken (2002). More

recently Bakshi and Cao (2003) provided empirical support for some stochastic volatility models with jumps in

returns and volatility. For alternative models see Alexander (2004), Brigo and Mercurio (2002), Brigo, Mercurio

and Rapisarda (2004), Carr and Wu (2003), and Madan, Carr and Chang (1998).
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GARCH specification given in Ding, Granger and Engle (1993) and Hentschel (1995). They
concluded that while analysis of the return time series alone is in favor of more complex models,
the option data suggest that the more parsimonious models with simple volatility clustering and
leverage effects tend to have better performance. The GARCH option pricing models considered
in Christoffersen and Jacobs (2004) all have conditionally normal innovations. Our study us-
ing the GARCH-Jump option pricing model thus adds to the empirical GARCH option pricing
literature.

Our empirical analysis focuses on a nested set of models that contain interesting special cases.
At one extreme, we consider models where in the limit volatility does not jump, but returns
can jump. A Merton-like model is considered, where jump risk is not priced, and a generalized
version of that model is also considered where jump risk is priced. At the other extreme we
consider models that contain no jumps but allows volatility to be time varying. Finally, we
consider models where jump and diffusive risks are priced and whose continuous-time limits
contain jumps in both returns and volatilities.

The paper proceeds as follows. In section 1 we provide the basic setup for the pricing
kernel and the dynamics of the underlying asset. We also identify the risk neutral measure, and
establish our nested models which represent interesting special cases. In section 2 we discuss
time series estimation and option pricing issues in the discrete-time GARCH-Jump framework.
In section 3 we examine our nested GARCH-Jump models and present empirical evidence from
time series of the S&P 500 index. In section 4 we employ an estimation method that combines
time series data with cross sectional data on option prices. We investigate the in-sample fits
of our nested models and compare them with the inverse Gaussian GARCH option model by
Christoffersen, Heston and Jacobs (2006) that also employs non-normal innovations. Finally, we
investigate how the option pricing models perform when the analysis is conducted using data
in the out-of-sample period of up to 5 years after the model parameters have been estimated.
Section 5 concludes.

1 The Basic Setup

We consider a discrete-time economy for a period of [0, T ] where uncertainty is defined on
a complete filtered probability space (Ω,F , P) with filtration (Ft; t ∈ {0, 1, · · · , T}) where F0

contains all P-null sets in F .

Let mt be the marginal utility of consumption at date t. For pricing to proceed, the joint
dynamics of the asset price, and the pricing kernel, mt

mt−1
, needs to be specified. We have

St−1 = EP
[
St

mt

mt−1

∣∣∣∣Ft−1

]
(1)
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where St is the total payout, consisting of price and dividends. The expectation is taken under
the data generating measure, P, conditional on the information up to date t− 1.

We assume that the dynamics of this pricing kernel, mt/mt−1, is given by:

mt

mt−1
= eat+bJt (2)

where at is the conditional mean growth rate of the pricing kernel and b is a scaling parameter
to adjust the volatility of the pricing kernel; and Jt is a standard normal random variable plus
a Poisson random sum of normally distributed variables. That is,

Jt = X
(0)
t +

Nt∑

j=1

X
(j)
t (3)

where

X
(0)
t ∼ N(0, 1)

X
(j)
t ∼ N(µ, γ2) for j = 1, 2, · · · ,

and Nt is distributed as a Poisson random variable with parameter λt, which may be stochastic
but is known at time t− 1 (i.e., Ft−1-measurable).3 The random variables X

(j)
t are independent

for j = 0, 1, 2, · · · and t = 1, 2, · · · , T . Hence:

EP [Jt|Ft−1] = λtµ

V arP [Jt|Ft−1] = 1 + λt(µ2 + γ2).

Let rt denote the single period (from t− 1 to t) continuously compounded risk-free interest
rate. Equilibrium implies that

EP
[

mt

mt−1

∣∣∣∣Ft−1

]
= e−rt (4)

Substituting for the dynamics of the pricing kernel, we obtain the following expectation:

EP
[

mt

mt−1
|Ft−1

]
= eat+b2/2+λt(κ−1), (5)

where
κ = eµ+b2γ2/2.

Combining equations (12) and (5), we have:

rt = −
(
at + b2/2 + λt(κ− 1)

)
. (6)

3Maheu and McCurdy (2004), building on a model by Bates and Craine (1999), offered one interesting speci-

fication for time-varying λt.
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Notice that the pricing kernel has local variance,

V arP
[
ln

(
mt

mt−1

)
|Ft−1

]
= b2

[
1 + λt(µ2 + γ2)

]
, (7)

and is time-varying as long as the jump intensity is time-varying. For the special case when
κ = 1, or equivalently when µ = −bγ2/2, the effects of the jump in the pricing kernel play
no role on the interest rate. For all other values, the jump process explicitly affects both the
interest rate and asset price.

The asset price, St, is assumed to follow the process:

St

St−1
= eαt+

√
htJ̄t (8)

where J̄t is a standard normal random variable plus a Poisson random sum of normal random
variables; αt is part of the conditional mean return to be determined later in Proposition 1; and
ht is a local scaling variable with its precise definition given later. In particular:

J̄t = X̄
(0)
t +

Nt∑

j=1

X̄
(j)
t (9)

where

X̄
(0)
t ∼ N(0, 1)

X̄
(j)
t ∼ N(µ̄, γ̄2) for j = 1, 2, · · ·

Furthermore, for t = 1, 2, · · · , T :

CorrP(X(i)
t , X̄(j)

τ ) =

{
ρ if i = j and t = τ

0 otherwise,

and Nt is the same Poisson random variable as in the pricing kernel.

The Poisson random variable provides shocks in period t. Given that the number of shocks
in a particular period is some nonnegative integer k, say, the logarithm of the pricing kernel for
that period consists of a draw from the sum of k +1 normal distributions, while the logarithmic
return of the asset also consists of a draw from the sum of k + 1 correlated normal random
variables. In either case, the first normal random variable is standardized to have mean 0 and
variance 1 because its location and scale have already been reflected in the model specification.

Since:

EP [
J̄t|Ft−1

]
= λtµ̄

V arP [
J̄t|Ft−1

]
= 1 + λt(µ̄2 + γ̄2),
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the local variance of the logarithmic returns for date t, viewed from date t− 1 is

V arP
[
ln

(
St

St−1

)
|Ft−1

]
= ht(1 + λtγ̂

2), (10)

where
γ̂2 = µ̄2 + γ̄2.

We shall refer to ht as the local scaling factor because it differs from local variance by a factor.
In general, the local scaling factor ht can be any predictable process. For example, it could
depend on all previous scaling factors and shocks. That is:

ht = F (ht−i, J̄t−i; i = 1, 2, · · ·) (11)

Equilibrium implies that

EP
[

mt

mt−1
|Ft−1

]
= e−rt (12)

EP
[

mt

mt−1

St

St−1
|Ft−1

]
= 1 (13)

These conditions impose a specific form on αt. The dynamics of the asset price can be rewritten
as in the following proposition.

Proposition 1

Under measure P, the dynamics of the asset price can be expressed as:

St

St−1
= eαt+

√
htJ̄t (14)

where

αt = rt − ht

2
−

√
htbρ + λtκ (1−Kt) (15)

ht = F (ht−i, J̄t−i; i = 1, 2, · · ·) (16)

Kt = exp
(√

ht(µ̄ + bργγ̄) +
1
2
htγ̄

2
)

. (17)

Proof: See Appendix

1.1 Pricing Derivatives

It is both customary and arguably more desirable to price derivative claims using a risk neutral
framework. Towards that goal we assume date T to be the terminal date that we are considering
and define measure Q by

dQ = exp

(
T∑

t=1

rt

)
mT

m0
dP. (18)
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Lemma 1

(i) Q is a probability measure.

(ii) For any Ft measurable contingent claim Zt, its time-(t-1) price is

Zt−1 = EP
(

Zt
mt

mt−1
|Ft−1

)
= e−rtEQ (Zt|Ft−1) .

Proof: See Appendix.

Given a specification for the dynamics of the pricing kernel and the state variable, all the
information that is necessary for pricing contingent claims is provided. While pricing of all claims
can proceed, the advantage of the Q measure is that pricing can proceed as if risk neutrality
holds.

Proposition 2

Under measure Q, the dynamics of the asset price is distributionally equivalent to:

St

St−1
= eα̃t+

√
htJ̃t (19)

where

α̃t = rt − ht

2
+ λ̃t (1−Kt) (20)

ht = F (ht−i, J̃t−i + bρ; i = 1, 2, · · ·) (21)

J̃t = X̃
(0)
t +

Ñt∑

j=1

X̃
(j)
t (22)

X̃
(0)
t ∼ N(0, 1) for t = 1, 2, · · · , T

X̃
(j)
t ∼ N(µ̄ + bργγ̄, γ̄2) for t = 1, 2, · · · , T and j = 1, 2, · · ·

X̃
(j)
t are independent for t = 1, 2, · · · , T and j = 0, 1, 2, · · ·

Ñt has a Poisson distribution with parameter λ̃t ≡ λtκ and Kt has been defined in Proposition

1.

Proof: See Appendix

Under measure Q, the overall dynamics of the asset price is similar in form to the dynamics
under the data generating measure, P. In particular, the logarithmic return is still a random
Poisson sum of normal random variables. However, under measure Q, the mean of each of the
normal random variables is shifted. Similarly, the random variable, Nt, distributed as a Poisson
random variable under measure P, is still Poisson under measure Q but with a shifted parameter.

Notice that each normal random variable has the same variance under both measures. How-
ever, the local variance of the innovation under measure Q is not equal to the local variance
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under the original P measure unless κ = 1 and bργ = 0. To see this, note that the expected
value, EQ(J̃t|Ft−1) and variance, V arQ(J̃t|Ft−1) of J̃i are:

EQ(J̃t|Ft−1) = λ̃t(µ̄ + bργγ̄) (23)

V arQ(J̃t|Ft−1) = 1 + λ̃tγ̃
2, (24)

where
γ̃2 = (µ̄ + bργγ̄)2 + γ̄2.

Hence the local variance of the innovation under measure Q is ht(1 + λ̃tγ̃
2), which differs from

the local variance of the innovation under measure P.4 In other words, one should not in general
expect the local risk-neutral valuation principle to apply.

Our theoretical results in Propositions 1 and 2 have already been utilized by Duan, Ritchken
and Sun (2006) to construct approximating GARCH-jump models with the purpose of deriving
limiting forms by shrinking the time interval. They show that the GARCH-jump model with
different GARCH specifications can be made to converge to continuous-time models with dif-
fusive elements and jumps in both returns and volatilities. The limiting model can be more
general than that in Bakshi, Cao and Chen (1997), Bates (2000) or Pan (2002), for it allows
for volatility jumps as well. By turning off jumps, the limiting model nests the square root
stochastic volatility model given in Scott (1987) and Heston (1993).

For empirical work it is necessary to select specific structures for the scaling factor’s dynamic
in equation (11). We adopt the NGARCH(1,1) dynamic for our empirical analysis. Notice that
when λt = 0, the model reduces to the NGARCH-Normal process. In their empirical tests,
Christoffersen and Jacobs (2004) found that this volatility dynamic performed the best among
many GARCH option models with normal innovations. Their findings motivate this particular
choice.

Our NGARCH(1,1) model with a compound Poisson innovation is of the form:

ht = β0 + β1ht−1 + β2ht−1

(
J̄t−1 − λt−1µ̄√

1 + λt−1γ̂2
− c

)2

, (25)

where β0 is positive, β1 and β2 are nonnegative to ensure that the local scaling process is positive.
Here we normalize J̄t−1 in the last term to make this equation comparable to the NGARCH
model which typically uses a random variable with mean 0 and variance 1. The ht process is
strictly stationary if β1 + β2(1 + c2) ≤ 1. The unconditional mean of ht is finite and equals
β0/

[
1− β1 − β2(1 + c2)

]
if β1 + β2(1 + c2) < 1. Both results are available in Duan (1997).

4This result differs from the local risk-neutral valuation of Duan (1995) because the innovation term is generated

by a Poisson random sum of normal random variables as opposed to the use of normally distributed innovations.

Of course, when the Poisson parameter is switched off, the local variance will remain unaltered with the measure

change and the pricing result reduces to that of Duan (1995).
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Using equations (23), (24) and (21), the updating scheme for the local scaling factor, ht,
specialized to equation (25), under measure Q, can be written as

ht = β0 + β1ht−1 + β∗2,t−1ht−1


 J̃t−1 − λ̃t−1(µ̄ + bργγ̄)√

1 + λ̃t−1γ̃2
− c∗t−1




2

(26)

where

β∗2,t−1 = β2

(
1 + λ̃t−1γ̃

2

1 + λt−1γ̂2

)

c∗t−1 =
c
√

1 + λt−1γ̂2 + λt−1µ̄− λ̃t−1(µ̄ + bργγ̄)− bρ√
1 + λ̃t−1γ̃2

Note that the fractional term inside the brackets has mean 0 and variance 1 under measure Q.

In summary, when the local scaling factor ht follows a NGARCH process, then under measure
Q, the updating scheme translates into a similar NGARCH process. A similar result applies
to different GARCH specifications because Proposition 2 allows us to easily come to specific
pricing system corresponding to different volatility dynamics. The specific result above allows
us to examine whether extending the NGARCH-Normal model to the NGARCH-Jump model
will further reduce the option pricing biases significantly.

1.2 The Nested Models

Under measure P, the expected total return on the stock can be expressed as:

EP
(

St

St−1
|Ft−1

)
= e(rt+ηt)

where the risk premium ηt is given by:

ηt = λtκ(1−Kt)− λt(1− eµ̄
√

ht+
γ̄2ht

2 )−
√

htbρ (27)

Recall, from equation (17) that:

1−Kt = 1− exp(
√

ht(µ̄ + bργγ̄) +
1
2
htγ̄

2)

≈ −
√

ht(µ̄ + bργγ̄)− 1
2
ht((µ̄ + bργγ̄)2 + γ̄2). (28)

where the approximation is justified if ht is small.5 Substituting this approximation into the
risk premium equation, we obtain:

ηt ≈ [λtµ̄(1− κ)− bρ(1 + λtκγγ̄)]
√

ht + λtγ̄
2(1− κ)

ht

2
. (29)

5In our empirical studies we obtain ht in the order of 10−6.
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This form of the risk premia allows us to gain some insight into the pricing model.

(i) The Merton Model

First consider the case when κ = 1 and γ = 0. In this case, µ = 0 and there are no jumps in
the pricing kernel. The risk premium, ηt reduces to −bρ

√
ht. That is, the risk premium does

not depend on jumps. With β1 = β2 = 0 in equation (25) the scaling factor remains constant.
Since jump risk is diversifiable, the local scaling factor is constant, and innovations, conditional
on the number of jumps are normal, we refer to this model as the discrete-time Merton (1976)
model, or Merton, for short.

(ii) The Generalized Merton Model

Second, consider the same model, but release κ and γ from 1 and 0. Naik and Lee (1990)
extended Merton’s model to the case where jump risk is not diversifiable. In our model this
is accomplished by releasing κ from 1 and/or γ from 0. With κ 6= 1 and γ = 0 in the pricing
kernel, the sensitivity of the risk premium to γ̄ is very small. That is, the randomness about
the jump size adds minimally to the risk premium.

With κ = 1 and γ > 0, the risk premium is

ηt ≈ −bρ
√

ht − bρλtγγ̄
√

ht.

Here, the uncertainty of the jump size, as measured by γ̄, adds to the risk premium as does the
intensity. This implies that jump risk is priced. With β1 = β2 = 0 in equation (25) the scaling
factor remains constant. We call this model the generalized Merton model.

(iii) The NGARCH-Normal Model

The third model we consider has no jumps, i.e., λt = 0, but with our scaling factor being
stochastic. In this case, innovations are normal random variables, and the risk premium is given
by ηt = −bρ

√
ht. The system is referred to as the NGARCH-Normal model, or the NGARCH

model for short.

(iv) The Restricted NGARCH-Jump Model

The fourth model keeps κ = 1 and γ = 0 again, but the scaling factor is permitted to be stochastic
and jumps in prices are allowed. In this model, jump risk is diversifiable, volatility is stochastic
and innovations are non-normal. The model is referred to as the Restricted NGARCH-Jump
model, or restricted JGARCH for short.

(v) The NGARCH-Jump Model

The final model is the most general model where jump risk is priced, scaling factor is stochastic,
jumps are present and innovations are not normal. The model is referred to as the NGARCH-
Jump model, or JGARCH for short.

10



We will explore in the next section which of the models nested in our family can explain both
the time series of the S&P 500 index values and the cross sectional variation of option prices
over a broad array of strikes and maturities.

1.3 The Inverse-Gaussian GARCH Option Model

Christoffersen, Heston and Jacobs (2006) (hereafter CHJ) proposed a discrete-time GARCH
option pricing model that has non-normal innovations. We will compare the performance of our
GARCH-Jump model with their model, which we refer to as the IG-GARCH model. Under the
data generating measure, their model has the form

St

St−1
= er+vht+ηεt (30)

ht = β0 + β1ht−1 + β2εt−1 + β3
h2

t−1

εt−1
(31)

where εt has an inverse-Gaussian distribution with degrees of freedom δt = ht/η2. That is

fIG(εt; δt) =
δt√
2πε3t

e−(
√

εt−δt/
√

εt)2/2 × 1{εt>0} (32)

If η < 0, then the conditional distribution has negative skewness. Note that the physical system
has six parameters, i.e., {β0, β1, β2, β3, v, η}.

CHJ assumed a pricing kernel under which options can be priced using a risk-neutral dynamic
that continues to be an IG-GARCH process but with different parameters. In particular,

St

St−1
= er+v∗h∗t +η∗ε∗t (33)

h∗t = β∗0 + β1h
∗
t−1 + β∗2ε∗t−1 + β∗3

h∗2t−1

ε∗t−1

(34)

where ε∗t has an inverse-Gaussian distribution with parameter, δ∗t = h∗t /η∗2, and v∗ = v(η∗/η)−3/2,
ε∗t+1 = εt+1(η∗/η)−1, β∗0 = β0(η∗/η)−3/2, β∗2 = β2(η∗/η)3/2, β∗3 = β3(η∗/η)−5/2. In addition,
since the true drift parameter is eliminated from the risk neutral pricing condition, the following
constraint must be imposed:

v∗ =
1

η∗2
(
√

1− 2η∗ − 1).

As compared to the physical system, the resulting risk neutral system has five free parameters,
i.e., {β∗0 , β∗1 , β∗2 , β∗3 , η∗}. The overall system (physical and risk-neutral) has seven parameters,
however, because the risk-neutral system has in effect introduced one extra parameter η∗. This
is evident from the above relationships linking the five risk-neutral parameters to the six physical
parameters. In short, in the empirical study of the IG-GARCH model using the combined data
of returns and option prices, the relevant parameter set is {β0, β1, β2, β3, v, η, η∗}.
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2 Data

We examine the performance of the above models using time series data on the S&P 500 index
and dividends, as well as option price information on the S&P 500 index.

The S&P 500 index options are European options that exist with maturities in the next
six calendar months, and also for the time periods corresponding to the expiration dates of the
futures. Our price data on the options, spans the time period from January 1996 to June 2005.
The data comes from Ivy OptionMetrics database which is a comprehensive database covering
US index and equity options markets. From this database we extract daily highest closing bid
and lowest closing ask prices across all exchanges for each option contract on the S&P 500
index. In addition we record the time to expiration, the strike price, and the closing price of
the S&P 500 index. We only consider option contracts that have a time to expiration greater
than 10 days and less than 120 days. We also exclude those option contracts that are so far
away from the money that there are liquidity concerns. In particular we exclude an option when
the midpoint of the bid-ask price is below intrinsic value, when the vega of the option is below
0.5, and when the implied volatility calculation fails to converge. We also record the interest
rate information on each day, and the dividend yield that OptionMetrics uses to compute the
Black-Scholes implied volatilities.

The interest rates that are available from OptionMetrics correspond to the continuously
compounded zero-rates derived from LIBOR rates and settlement prices of CME Eurodollar
futures. For any given option, the appropriate interest rate corresponds to the zero rate that
has maturity equal to the option’s expiration, and is obtained by interpolating between the two
closest zero rates on the zero curve.

In order to price the options we need to adjust the index level according to the dividends paid
out over the time to expiration. Harvey and Whaley (1992), and Bakshi, Cao and Chen (1997),
used the actual cash dividend payments made during the life of the option to proxy for the
expected dividend payments. The present value of all the dividends was then subtracted from
the reported index levels to obtain the contemporaneous adjusted index levels. This procedure
assumes that the reported index level is not stale and reflects the actual price of the basket of
stocks representing the index when the option quotes were obtained. There are other methods
for establishing the dividend adjusted index level. The first is to use the stock index futures price
to back out the implied dividend adjusted index level. This leads to one stock index adjusted
value that is used for all option contracts with the same maturity. The second is to compute the
mid points of call and put options with the same strikes and then to use put-call parity to imply
out the value of the underlying index. OptionMetrics uses a regression approach that exploits
put-call parity conditions repeatedly over a number of contracts and over a ten-day period to
extract an implied dividend yield that they apply to all option contracts. We use their extracted
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dividend yield in all our computations. For a discussion of different approaches see Jackwerth
and Rubinstein (1996).

We extract option prices on a weekly basis, each Wednesday, over the 9.5-year period (Jan-
uary 1996 to June 2005). For the underlying S&P 500 index we obtain the time series of daily
returns going back to January 1970. We have 43, 377 option contracts that pass all the filters,
with the number of contracts each year ranging from a low of 2,306 for the six month period in
2005 to a high of 5,069 contracts in 2002.

We split up our data set into two, an “in-sample” period extending over the first 5 years,
and an “out-of-sample” period covering the remaining 5 years.

We define moneyness as the index price relative to the strike price. We construct histograms
of moneyness and days to expiration. The top graph of Figure 1 shows the distribution of
moneyness over the in-sample period, and the bottom figure shows the distribution of expiration
dates. The mode of the distribution is at the short maturities. Over 90% of maturities are within
90 days. We construct buckets of maturities, defining bin 1 as those contracts that expire within
30 days; bin 2, those that expire in the 31-60 day range; bin 3, those that expire in the 61-90
day range and bin 4 are those contracts that have longer expiration dates.

Figure 1 Here

Table 1 shows the number of option contracts by moneyness and by maturity and the average
implied volatilities for each of the moneyness-maturity bins. We see from the table that the
largest variation in volatilities across strike prices occurs for the shorter-term option contracts.

Table 1 Here

The top graph in Figure 2 plots the average monthly volatility smile by moneyness over the
ten-year time period for all contracts less than 30 days. The exact shape of the volatility smile
fluctuates over time. From this figure we see that deep in-the-money calls generally have the
largest volatilities. The bottom graph in Figure 2 shows the time series behavior of at-the-money
implied volatilities over the ten-year period. As can be seen volatilities have fluctuated from
10% to over 30%.

Figure 2 Here
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3 Estimation of Models Using Time Series of Returns and/or

Option Prices

Our first set of experiments are concerned with using the time series return data on the S&P
500 index alone to compare the performance of some of the models nested in the GARCH-Jump
family, and to contrast these models with the IG-GARCH model.

We apply the maximum-likelihood method on the time series of index returns to estimate
the model parameters. Our model parameter set is θ = {β0, β1, β2, c, bρ, κ, γ, µ̄, γ̄, λ}. Define
Rt ≡ ln(St/St−1). The conditional probability density function for Rt is:

l (Rt|ht) =
∞∑

i=0

λi

i!
e−λf

(
Rt − αt; µi(t), σ2

i (t)
)

(35)

where αt is given in Proposition 1; the NGARCH(1,1) local scaling factor, ht, is by equation
(25); and f

(·; µi(t), σ2
i (t)

)
is the normal density function with mean µi(t) = iµ̄

√
ht and variance

σ2
i (t) = ht(1 + iγ̄2).6 The initial value of the local scaling factor is set according to

h1 = V/(1 + λγ̂2) (36)

where V is the sample variance of the asset return and as defined earlier, γ̂2 = µ̄2 + γ̄2.7

The log-likelihood function for the sample of asset prices is:

L(θ; S1, S2, · · · , ST ) =
T∑

t=2

ln [l (Rt|ht)] . (37)

The maximum likelihood estimator for θ is the solution of maximizing the above log-likelihood
function. Given the asset price time series, {St}1≤t≤T , we can compute the log-likelihood func-
tion recursively, and solve this optimization problem numerically.

In principle, the entire set of parameters can be identified by only using a return time
series. In practice, however, two of them are hard to pin down empirically. To understand this
assertion, notice that conditional on αt the log-likelihood function is fully determined by µ̄, γ̄2,
λ, and the parameters driving the variance updates – β0, β1, β2, and c. To fully characterize
the log-likelihood function, we of course need to know αt, which in turn requires knowledge
of three extra parameters, namely µ, γ and bρ. Recall from equation (28) that: 1 − Kt ≈
−√ht(µ̄ + bργγ̄)− 1

2ht((µ̄ + bργγ̄)2 + γ̄2). Substituting this expression into equation (15) leads

6Conditioning on Nt = i, the variance of J̄t is 1 + iγ̄2. Without conditioning, however, the variance becomes

1 + λγ̂2.
7Note that V arP(J̄t) = (1+λγ̂2). Thus, we have in essence removed the extra volatility arising from the jump

component in setting the initial value of the scaling factor process.
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to:

αt ≈ r − 1
2
ht(1 + λκ(γ̄2 + (µ̄ + bργγ̄)2))−

√
ht(bρ + λκµ̄ + λκbργγ̄)

≈ r −
√

ht(bρ + λκµ̄ + λκbργγ̄) (38)

where the second approximate equality comes from the fact that ht is much smaller than
√

ht

because
√

ht takes on small values already. The above formula suggests that the coefficient of√
ht, i.e., (bρ+λκµ̄+λκbργγ̄), practically acts as a single term, which makes it hard to separate

bρ, κ and γ. Note that parameters λ, µ̄ and γ̄ directly enter into the density function. In contrast,
parameters bρ, κ and γ only appear through αt. Since only the sum (bρ+λκµ̄+λκbργγ̄) matters
in the log-likelihood function, two of the three parameters – bρ, κ and γ – are indeterminate. In
the estimation, we thus introduce a composite parameter δ = bρ + λκµ̄ + λκbργγ̄, and actually
estimate the parameters in the set, θ∗ = {β0, β1, β2, c, δ, µ̄, γ̄, λ}.

Notice that when κ = 1 and γ = 0 we obtain the restricted NGARCH-Jump model. This
model as well as the Merton model (with β1 = β2 = 0) can be fully estimated using the maximum
likelihood method on the return time series alone. In addition, the NGARCH-Normal model
can be readily estimated from the time series alone.

For the IG-GARCH model, the parameter set is θ∗ = {β0, β1, β2, β3, v, η}, and maximum
likelihood estimation is employed with the conditional density function in equation (32). Recall
that Rt = ln(St/St−1). Let εt = Rt−µt

η where µt = r + vht. Then if εt is distributed as inverse
Gaussian, the density of Rt is

f(Rt; δt) = fIG

(
Rt − µt

η
; δt

) ∣∣∣∣
∂εt

∂Rt

∣∣∣∣

=
δt√

2π(Rt − µt)/η)3
e
− 1

2

(√
(Rt−µt)/η− δt√

(Rt−µt)/η

)2 ∣∣∣∣
1
η

∣∣∣∣

=
ht

η2
√

2π(Rt − µt)/η)3
e
− 1

2

(√
(Rt−µt)/η− ht

η2
√

(Rt−µt)/η

)2 ∣∣∣∣
1
η

∣∣∣∣ .

3.1 Empirical results using the return time series

Table 2 shows the parameter estimates based on the time series of daily S&P 500 index returns
starting from 1970 through 2005 and repeated over different subsamples.

Table 2 Here

For the Merton model, the NGARCH model, the restricted NGARCH-Jump model and the
IG-GARCH model, the parameter estimates and their standard deviations are reported. They
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are followed by the maximum log-likelihood value and the Akaike Information Criterion (AIC)
which measures model performance by accounting for goodness of fit and parsimony. A smaller
AIC indicates a better performance.

For the two models (Merton and NGARCH-Normal) nested in the restricted NGARCH-
Jump model, one can use the likelihood ratio test to evaluate whether there is any incremental
value in adding complexity to the Merton model. Under the null hypothesis that the more
complex model does not add significantly, two times the difference in the log-likelihood values
should distribute as a chi-square distribution with the degrees of freedom equal to the difference
in the numbers of parameters of the two models.

The likelihood ratio test based on Table 2 indicates that, at the 1% level, the restricted
NGARCH-Jump model is a significant improvement over the Merton model. This suggests that
return data exhibits the GARCH feature. Further, the likelihood ratio test reveals that the effect
of adding jumps to the NGARCH model leads to significant improvements. Specifically, Table
2 reveals that λ is significantly different from 0, indicating that the incorporation of jumps is
significant and the conditional distribution exhibits skewed and heavy-tailed behavior. For the
restricted NGARCH-Jump model, the non-linear term c, capturing the so called leverage effect,
continues to be significant after adding jumps to the NGARCH model. In addition, the results
are similar for the two sub-samples. The results based on the AIC criterion also lead to the
same conclusion. Taken together, the restricted NGARCH-Jump model is clearly the dominant
model in this nested class.

Eraker, Johannes and Polson (2003) find that jumps are infrequent events, occurring on
average about twice every three years, tend to be negative, and are very large relative to normal
day to day movements. In contrast, our average “jump” frequency is over two a day. In our
model the jumps add conditional skewness and kurtosis to the daily innovations, rather than
providing large shocks. Indeed, the mean and standard deviation of our jump size variable is not
particularly large compared to the standard normal innovation. By mixing a random number of
normal distributions, the conditional distribution displays higher kurtosis. In our case J̄t consists
of one standard normal random variable together with a Poisson random sum of independent
normal random variables with mean µ̄ and variance γ̄2.

The results in Table 2 reveals that the performance of the IG-GARCH model according to the
AIC criterion is markedly worse than either the NGARCH-Normal or restricted NGARCH-Jump
model in the whole sample as well as in two sub-samples. The fact that it is even worse than the
NGARCH-Normal model is particularly worth noting. Although the IG-GARCH model allows
for non-normal conditional innovations, it relies on a GARCH specification that is less compatible
with the data than is the NGARCH model. As a result, the NGARCH model restricted to normal
conditional innovations can still outperform the IG-GARCH model in terms of the log-likelihood
value even before accounting for the compensation factor due to fewer model parameters.
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Figure 3 shows the quantile-quantile (Q-Q) plots for the three special cases of the NGARCH-
Jump model and for the IG-GARCH model. For this analysis we begin by first transforming
returns using the appropriate conditional distribution function corresponding to each model, say
Ft−1(Rt; θ̂). The resultant sequence of random variables should be approximately independent,
identically distributed uniform random variables. Then, applying the inverse standard normal
distribution function, these variables are transformed into standard normal random variables.
The overall transformation is εt = Φ−1(Ft−1(Rt; θ̂)). If a model is adequate, then the sequence
of εt should form an i.i.d. sample of standard normal random variables.

Figure 3 Here

The top figures shows the Q-Q plots of the theoretical normalized residuals against the actual
normalized residuals for the Merton model and the IG-GARCH model, while the lower panel
shows the plots from the NGARCH-Normal (NGARCH) and the restricted NGARCH-Jump
(JGARCH) models. The straight lines connect the 25th and 75th percentiles. The scales on
these plots are all identical.

The figures show that there are small differences between the IG-GARCH and the NGARCH-
Normal models. Both do not fit the tails of the distribution well. The Merton model seems to
fit better, although there are still deviations in both tails.8 The restricted GARCH-Jump model
seems to eliminate the bias in the upper tail, but some smaller bias remains in the lower tail.

Panel A of Table 3 provides further descriptive statistics on the normalized residuals for
each of the four models. Note that the skewness and kurtosis of the normalized residuals
corresponding to the restricted NGARCH-Jump model are closest to the prediction of standard
normality, and the number of outliers is the smallest. Formal Kolmogorov-Smirnov tests for
normality, reject the null hypothesis for all the models at the 1% level of significance, with the
exception of the restricted NGARCH-Jump model. The Merton model, although being rejected,
seems to perform better than the other two models. We can thus conclude that the compound
Poisson distribution shared by the Merton and GARCH-Jump models is more compatible with
return data than the Inverse-Gaussian distribution adopted by CHJ.

Table 3 Here

Panel B of Table 3 reports the Ljung-Box statistics for testing the significance of the autocor-
relation among the residuals and squared residuals for all four models. The tests are conducted
for the full sample period and for two subsample periods after the stock market crash of 1987.

8This result is not particularly surprising because the Q-Q plot mainly focuses on the distributional charac-

teristics rather than on the time series dependency.
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The autocorrelation of residuals produced by all models is significant at the 5% level. This
significance can be traced back to the very high autocorrelation in the raw returns that existed
in the early data period from 1970 to 1987, likely due to non-synchronous trading among the
S&P 500 component stocks in this earlier period. In the two subperiods after 1987, all models
produced residuals that were not significantly autocorrelated.

As can be seen from the table, the autocorrelation among the squared residuals produced by
the Merton model is significant for the entire sample as well as for each of the two subsamples.
The two NGARCH models were effective in removing autocorrelation in the squared residuals.
In contrast, the IG-GARCH model still yields significantly autocorrelated squared residuals for
the whole sample, indicating that the IG-GARCH volatility specification is less compatible with
the data.

3.2 Empirical results using time series of returns and option prices

There are several ways in which option pricing models can be evaluated.9 First, one can estimate
all model parameters with the underlying asset price series. The estimated parameters can then
be used in the option pricing system (under measure Q) to price all options. This implementation
can be likened to estimating historical volatilities from the return data and then evaluating the
Black-Scholes formula based on these estimates. This approach is obviously quite demanding on
an option pricing model because option data have not been used in the parameter estimation.
For the NGARCH-Jump model, as discussed earlier, there is also an econometric complexity
associated with only using the return data. Specifically, for this model, some parameters (i.e.,
bρ, κ and γ) are difficult to identify from the return time series alone. This approach is thus not
practically advisable.

The second way of implementation uses option data in estimation. The underlying return
series is used to update the local volatility but it does not directly enter into the likelihood
function in parameter estimation. This approach is in a way like running a nonlinear regression
by treating the underlying asset price as an exogenous variable. In the Black-Scholes framework,
this is analogous to obtaining just one implied volatility by pooling the information from many
options together. For the GARCH option pricing model, one can obtain the time series of
volatilities, corresponding to a set of parameters and conditional on stock price moves, and
then periodically price some panels of option contracts. The optimization criterion typically
focuses on minimizing sums of squared option pricing errors. This approach clearly overlooks
the information embedded in the underlying return time series because such series also provides
useful information concerning the basic premise of an option pricing model; that is, the assumed
dynamic for the underlying asset price. The implementation of the GARCH option pricing model

9For an excellent review of empirical option pricing see Bates (2003).
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adopted by Heston and Nandi (2000), Christoffersen and Jacobs (2004), Hsieh and Ritchken
(2005) all fall in this category.

The third and better way of implementing an option pricing model is to combine the option
and underlying asset prices over the sample period to conduct a joint estimation of the model.
Thus, both option and underlying asset prices directly enter into the joint likelihood function
describing the overall system. For ease of exposition, we will refer to this method as the panel
estimation approach which has been adopted in our empirical analysis.

The panel estimation approach can be implemented in many different ways. The part con-
cerning the underlying return time series is rather straightforward because it follows directly
from our GARCH-Jump specification. For option prices, one does have a choice, namely using
the prices directly, or transforming them to the Black-Scholes implied volatilities. In essence,
the choice amounts to opting for a particular specification for the cross-sectional error struc-
ture. Since option prices naturally vary according to their strike prices and maturities, implied
volatilities offer a cross-sectional data standardization that is intuitively appealing and conve-
niently tied-to common industry practice of quoting implied volatilities in referring to option
contracts. In short, our specific panel estimation approach take a vector of observations at a
time point whose first entry is always the underlying asset price and remaining entries are the
implied volatilities of options included in our sample. Note that the dimension of this data
vector depends on the availability of options at a particular time point, as well as our decision
as to which options to include. We derive the joint likelihood function for such kind of data
vectors over the sample period and use the joint likelihood function to conduct the maximum
likelihood parameter estimation.

Denote the data vector at time by Dt(mt); that is, Dt(mt) = (St, IVt,1, · · · , IVt,mt)′ where
mt is the number of options at time t being included and IVt,j is the Black-Scholes implied
volatility of the j-th option at time t. The joint log-likelihood function thus becomes

L(θ, ω; D1(m1), · · · , DT (mT ))

=
T∑

t=2

ln [l (Rt|ht)]−
(

ln(2π)
2

+ ln(ω)
) T∑

t=1

mt − 1
2ω2

T∑

t=1

mt∑

j=1

(
IVt,j − ˆIV t,j(θ)

)2

where the expression for l (Rt|ht) is available in equation (35); and ˆIV t,j(θ) is the Black-Scholes
implied volatility computed from the GARCH option price of the j-th option at time t evaluated
at parameter θ. The first term on the right-hand side is the log-likelihood associated with the
underlying stock price time series. The summation begins from t = 2 because the first stock price
is only used to anchor the conditional distribution for the second stock price. The second and
third terms on the right-hand side is the log-likelihood function of the option data conditional
on the underlying stock price series. We have assumed that the errors in terms of implied
volatilities share the same magnitude and are independent across options and over time. The

19



error distribution is assumed to be normal with a standard deviation of ω. Needless to say, this
restriction can be relaxed, such as allowing for time and/or cross-sectional dependency, at the
expense of introducing more parameters.

For the NGARCH-Jump model, the combined data of asset and option prices can be used
to identify the full parameter set governing this option pricing model. In this case, θ =
{β0, β1, β2, c, bρ, κ, γ, µ̄, γ̄, λ}. The whole set of parameters to be estimated is thus composed
of θ and ω. In the case of the IG-GARCH model, the full parameter set governing this option
pricing model is θ = {β0, β1, β2, β3, v, η, η∗}. Again the whole set of parameter to be estimated
consists of θ and ω.

We use the time series of daily returns up to the first Wednesday in January 1996 to update
our local scaling factor. Then, given the dividend adjusted index at that date, and using the
term structure of riskless rates at that date, we numerically compute the theoretical option
prices of selected call and put contracts for a given model. Since there are no simple analytical
expressions for the NGARCH option pricing models, their prices are generated by Monte Carlo
simulation. For a fair comparison, we also use the same stream of random numbers to generate
the prices for the IG-GARCH model. We use 5,000 sample paths to generate Monte Carlo option
prices. To improve the quality of Monte-Carlo prices, we apply the analytical pricing formula
on the last day of the contract because the analytical solution does exist for one-day option
contracts. We then compute the implied volatilities using the Black Scholes model, and the
resulting values are used in the log-likelihood function. We then use the daily returns to update
the local volatility to the next time point on which the next set of option prices is available.
The process is repeated and the individual log-likelihood is added to the overall log-likelihood
function. We continue this process for all days in the estimation period.

We split our option data into two – the “in-sample” period starting in 1996 and extending
through 2000 and the “out-of-sample” period with the remaining data. Our initial parameter
estimates are taken from the return time series analysis that uses all information up to 1996.
The likelihood function then consists of the time series component together with information
from options taken every fourth week up to the end of 2000. As a result we have used 60 panels
of cross sectional option vectors, together with the 5 years of daily return time series information
in the parameter estimation. The option contracts used in the optimization include all contracts
with maturities between 10 and 90 days and moneyness within 5% of the index value.

Once the optimized parameter values are obtained, we use them and the daily time series of
the S&P 500 index to compute the full time series of the local scaling factor over both the in- and
out-of-sample periods. Then, for each Wednesday, given the index level and the updated scaling
factor, together with interest rate and dividend information, we can compute the theoretical
implied volatilities and compare to their actual counterparts. We do this for each week in the
in-sample period and for each week in the 5 years corresponding to the “out-of-sample” period.
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Further, we compute prices for the longer maturity contracts (maturities that exceed 90 days)
and moneyness factors that were never used in the optimization. The residuals obtained from
different models then form the basis for our comparisons of the models. An option model is
viewed positively if the in-sample fits are more precise and less biased, and if, conditional on
future up-to-date index values, the “out-of-sample” price predictions are also more precise and
less biased.

Before presenting the results, it should be noted that our objective is not to fit the volatility
smile precisely at any one date. Were this curve fitting exercise the goal, we would merely choose
parameter sets each week that minimize the sum of squared errors (in implied volatilities) for
different models. By using 5 years of data to choose one set of parameters, our fits of implied
volatilities at any week in the in-sample period will naturally be less precise than models obtained
by more frequent recalibrations. Further, in our “out-of-sample” period, we would expect the
performance of all models to deteriorate over time, especially when parameter estimates are not
updated, say after 5 years. However, our goal here is only to compare the relative performance
of these models under identical conditions. Any model that is successful in these tests can then
be further scrutinized by evaluating its performance with more frequent parameter updates.

Table 4 reports the parameter estimates for the generalized Merton, the NGARCH-Normal,
the IG-GARCH, and the NGARCH-Jump models, together with their log-likelihood values in
the in-sample setting. Note that in the case of the generalized Merton model, jump risk is allowed
to be priced. In terms of NGARCH-Jump model, we no longer need to apply the restricted form
because all parameters can be identified with the added information from option prices.

Table 4 Here

The likelihood ratio tests reveal that at the 1% level of significance, the NGARCH-Jump
model improves significantly over the NGARCH-Normal model, and is also superior to the
generalized Merton model. These results echo the earlier findings based on the return time
series only. In short, both the GARCH effect and jumps play critical roles in capturing data
features.

For comparing the non-nested models, we again resort to the AIC. The results in Table 4 show
a clear dominance of the NGARCH-Jump model over the IG-GARCH model. The NGARCH-
Normal also dominates the IG-GARCH model. Strikingly perhaps, the NGARCH-Normal model
can dominate the IG-GARCH model based on the log-likelihood values even before factoring in
its smaller set of parameters (6 vs. 8). The results from the combined data of returns and option
prices indicate that the restricted form of the volatility dynamic essential to the IG-GARCH
model is at odds with the data. In summary, simply incorporating skewed and/or heavy-tailed
innovations into a GARCH model need not work well on return and/or option data. A suitable

21



volatility specification may be more important than the form of the conditional distribution for
return innovations.

The two parameters, κ and γ, can be identified under the NGARCH-Jump model with the
combined data. Their individual parameter estimates, κ = 1.186 and γ = 0.41392, differ from
the theoretical values of 1 and 0 predicted when the jump risk is not priced, but not statistically
significant. For the IG-GARCH model, the coefficient multiplying the inverse Gaussian innova-
tion hardly changes from the physical measure to the risk-neutral measure (from η = 5.99×10−4

to η∗ = 5.92× 10−4).

Once the parameters are estimated, theoretical prices for all option contracts, including
those with strike prices more than 5% away from the money, and with maturities exceeding 90
days are computed on each Wednesday, and their Black-Scholes implied volatilities established.
The residuals are then established as the difference between theoretical and observed implied
volatilities. Figure 4 shows a box and whiskers plot of these residuals by moneyness for each of
the four models. Thirteen moneyness buckets were established with mean moneyness in each
bucket ranging from 0.85 to 1.07, with the at-the-money contracts being in group 9. The figure
clearly reveals that the generalized Merton model is incapable of removing significant biases
along the moneyness dimension. At-the-money contracts are priced with little bias, but deep
out-the-money contracts are overpriced and deep in-the-money contracts are underpriced.

Figure 4 Here

The plots of the NGARCH-Normal and IG-GARCH models are fairly similar to that of the
generalized Merton model, in that the patterns of skewness are the same although of a much
smaller magnitude. The NGARCH-Jump model has the least bias of all the models and clearly
produces small biases for deep in-the-money contracts.

Figure 5 shows the box and whiskers plots of the residuals by maturity buckets for each of
the four models also using all contracts in the in-sample period. For each maturity bucket, there
are four box and whiskers plots representing from left to right the generalized Merton model, the
NGARCH-Normal model, the IG-GARCH model and the NGARCH-Jump model, respectively.

Figure 5 Here

This figure shows large biases and large interquartile ranges for the generalized Merton
model. For short-maturity contracts the NGARCH-Jump model displays some bias. For the
other maturities the bias is slight and the interquartile ranges are smaller than the other models.
Except for the generalized Merton model, the models seem to work roughly the same viewed
from the maturity dimension.
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Table 5 shows the proportion of times the NGARCH-Jump model produces a smaller abso-
lute error than the other models. These comparisons are conducted over both moneyness and
maturity buckets. For ease of displaying the results the moneyness categories are reduced to 5,
with group 3 being at-the-money. Nonparametric tests of the null hypothesis that the proportion
of wins is 50% against the alternative that the proportion is larger than 50% are conducted.
The bold-faced numbers indicate those moneyness-maturity combinations where the reported
proportion is significantly different, at the 1% level, from 50%. We also report the results of
pairwise comparisons between the NGARCH-Normal and IG-GARCH models and between these
models and the generalized Merton model. The left column reports the results for the in-sample
period and the right side reports the results for the out-of-sample period.

Table 5 Here

The results show how poorly the Merton model performs against all other models. It also
shows that the overall performance the NGARCH-Normal model is comparable to that of the
IG-GARCH model in the in-sample test but it dominates in the out-of-sample analysis. Overall
the NGARCH-Jump model outperforms all others in both “in-sample” and “out-of-sample”
tests.

Our last set of analyses in this section deals with “out-of-sample” performance using the last
five years of data. Figure 6 compares the time series of at-the-money volatilities averaged over
a month with their theoretical counterparts for each of the four models. For the first 60 months
these are “in-sample”’ values. After that, the implied volatilities are “out-of-sample”. The
Merton model has a constant volatility, so the implied volatilities do not fluctuate. The figure
shows the realization of volatilities for the three GARCH models. It is evident from these plots
that the NGARCH-Jump model has the best performance whereas the Merton model performs
the worst.

Figure 6

Our “in-sample” estimation was conducted using 60 cross-sections of option prices monthly
over a period of 5 years. It is unlikely that, without more frequent recalibration, a model will
provide reasonable fits to all options over the entire 5 years. In Figure 7 we investigate the bias
produced by each model over each year in pricing at-the-money options. For each of the first
5 years, the box plots of the residuals for each model are “in-sample” residuals. For the years
after 2000, the residuals are “out-of-sample”. A model is viewed positively if the box plots for
a given model over each of the first five years are unbiased and if the deterioration of the fit in
the “out-of-sample” period is slow.

Figure 7 Here
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The box plots in each year are ordered with NGARCH-Jump followed by NGARCH-Normal,
IG-GARCH, and Merton. As can be seen there is considerable time variation over the years
which the models do not capture. Of all the plots, the NGARCH-Jump model produces box
plots with the least bias. However, all the models reveal that error terms are highly persistent.
In the first three years of the “out-of -sample” period the fit of the NGARCH-Jump model is
especially good compared to the other models. In the last two years the performance of all
models deteriorates, with significant overpricing of all contracts.

To investigate whether the NGARCH-Jump model performs relatively better in the out-of-
sample period for each month we compute the mean squared errors (MSE). We then compute
the ratio of the MSE of each model relative to the MSE of the NGARCH-Jump model. In
Figure 8 we present the time series of these ratios for the NGARCH-Normal model and for
the IG-GARCH model. Notice that for both of these time series the ratios are for the most
part significantly above 1. These results indicate that the NGARCH-Jump model performs well
out-of-sample relative to the NGARCH-Normal and IG-GARCH models.

Figure 8

The lower panel of Figure 8 shows the time series of the monthly ratio of the MSE for the
IG-GARCH model relative to the MSE for the NGARCH-Normal model. The graph reveals
that in most months the ratio is above 1 indicating the superiority of the NGARCH-Normal
model.

The final analysis investigates the out-of-sample bias across moneyness. For each of our 13
moneyness categories, we compute the MSE of residuals for each model for each month. The
ratio of the MSEs of the NGARCH-Normal and IG-GARCH models relative to the NGARCH-
Jump model are computed and box plots of these ratios are presented in Figure 9. The median
ratios are above 1 for all moneyness contracts for the IG-GARCH model. The NGARCH-Normal
model is more competitive with the NGARCH-Jump model, but only for contracts close to bin
9 which represents the at-the-money category.

Figure 9

The errors reported in this study are somewhat similar to the errors reported in one-week
“out-of-sample” tests conducted by Bakshi and Cao (2003) for their stochastic volatility model
with correlated return and volatility jumps. For out-(at-)the-money calls their average absolute
percentage errors ranged from 14% to 27% (5% to 12%) depending on maturity. Comparisons
of our residuals with theirs are somewhat difficult to make for several reasons. First, in our
study we used time series of the underlying index in conjunction with panel data on options
to estimate one set of parameters, while they refit their parameters based on out-the-money
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contracts. Further, we do not reestimate our model dynamically. Indeed, at the extreme, we
obtain option prices 5 years after parameters have been estimated. Bakshi and Cao’s analysis is
primarily geared towards examining volatility skews for stock options rather than index options.
Bakshi, Kapadia and Madan (2003), relate individual security skewness to the skew of the
market, and identify conditions where the skewness of the market is greater. This skewness
directly relates to the volatility smile. In spite of differing objectives, our error terms appear to
be of similar magnitudes to their reported values.

4 Conclusion

In this paper we extend Duan’s (1995) GARCH option pricing model that relies on normal
innovations to allow for a particular type of non-normal innovations that can be related to
jumps. This class of GARCH-Jump models extends the literature in a very important way.
Specifically, they contain, as special limiting cases, models of the underlying that contain jumps
in returns and/or in volatilities. This is in sharp contrast to the typical GARCH models based
on normal innovations. Since these latter models in their limiting forms only exhibit a diffusive
stochastic volatility behavior, it is not surprising that they are incapable of removing some
well-known option pricing biases. We provide in this paper a theory of GARCH option pricing
that permits contracts to be priced in the presence of skewed and leptokurtic innovations, and
demonstrate that this generalization is empirically significant.

Specifically, using data on the S&P 500 index and the set of European options written on
this index, we have provided empirical tests of the ability of GARCH-Jump models to price
options. We show that introducing jumps that allow for heavy tails and higher kurtosis adds
significantly to explaining the time series behavior of the S&P 500 index and its options.

For pricing of options our simplest nested model, the Merton model, performed the worst.
Either allowing for time-varying volatility or including priced jump risk leads to better per-
formance. However, all models based on normal innovations were dominated by models that
allowed non-normal innovations. Unlike the findings of Christoffersen and Jacobs (2004), we
demonstrate that complex models of the underlying that go beyond capturing simple volatil-
ity clustering and leverage effects, can add significantly to explaining the volatility smile over
time. Further, we show that the GARCH-Jump model is capable of pricing options well without
requiring frequent model recalibration. Indeed, our models were capable of good pricing even
after one or two years had passed after the parameters have been estimated.

In general, distinguishing between stochastic volatility and jumps is difficult. Our empirical
results show that jumps were frequent, with more than one “jump” a day. This implies that
to capture heavy-tailed return distributions random mixing of normal innovations as in the
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GARCH-Jump model can be a productive approach. Although our empirical results are based
on a local volatility updating equation of the NGARCH form, the theory holds for other GARCH
specifications. We have, for example, examined a threshold GARCH model with jumps as an
alternative to the NGARCH model with jumps. While not reported here, our preliminary results
indicate that the difference between the two volatility structures is not particular important for
European option pricing. What is more important is that both models should allow for jumps
so that local returns conditionally are not constrained to be normally distributed.
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Appendix

Proof of Proposition 1

Substituting for the dynamics of the pricing kernel, we compute the following expectation:

EP
[

mt

mt−1
|Ft−1

]
= exp

[
a + b2/2 + λt(κ− 1)

]
.

Since this value is the price of a one period discount bond with face value $1, we have:

rt = −
(
a + b2/2 + λt(κ− 1)

)
.

This equation uniquely identifies a in terms of the other variables.

Now consider the pricing equation for the asset. We have, from equation (13),

EP
[

mt

mt−1

St

St−1
|Ft−1

]
= 1.

Substituting for the dynamics of the pricing kernel and the asset price, the equation can be
reexpressed as

EP
[
e
αt+a+X̃

(0)
t +

∑Nt
j=1

X̃
(j)
t

]
= 1

where

X̃
(0)
t ∼ N(0, σ2

0t)

X̃
(j)
t ∼ N(bµ +

√
htµ̄, σ2

t )

with

σ2
0t = ht + b2 + 2

√
htbρ

σ2
t = htγ̄

2 + b2γ2 + 2
√

htbργγ̄

Computing this expectation, the equation leads to:

αt + a + σ2
0t/2− λt + λte

bµ+
√

htµ̄+σ2
t /2 = 0

Finally, substituting the expression for a into the above equation leads to:

αt = rt − ht

2
−

√
htbρ + λtκ

[
1− exp

(√
ht (µ̄ + bργγ̄) +

htγ̄
2

2

)]
,

and the result follows.

Proof of Lemma 1

The proof follows along the line of Duan (1995).
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(i) Q is a probability measure since:
∫

1dQ =
∫

e
∑T

t=1
rt

mT

m0
dP

= EP
[
e
∑T

t=1
rt

mT

m0

∣∣∣∣F0

]

= EP
[
e
∑T

t=1
rt

mT−1

m0
EP

(
mT

mT−1

∣∣∣∣FT−1

)∣∣∣∣F0

]

= EP
[
e
∑T−1

t=1
rt

mT−1

m0

∣∣∣∣F0

]

where the last equality follows from the fact that:

EP
[

mT

mT−1

∣∣∣∣FT−1

]
= e−rT .

Continuing this process we obtain ∫
1dQ = 1.

(ii) Now, for any t < T , we have:

EQ[Zt|Ft−1] = EP
[
Zte

∑T

s=t
rs

mT

mt−1

∣∣∣∣Ft−1

]

= EP
[
Zte

∑T

s=t
rs

mT−1

mt−1
EP

(
mT

mT−1

∣∣∣∣FT−1

)∣∣∣∣Ft−1

]

= EP
[
Zte

∑T−1

s=t
rs

mT−1

mt−1

∣∣∣∣Ft−1

]

Continuing this process, we obtain:

EQ[Zt|Ft−1] = ertEP
[
Zt

mt

mt−1

∣∣∣∣Ft−1

]
= ertZt−1.

So, Q is a local risk neutral probability measure.

Proof of Proposition 2

The proof follows along the line of Duan (1995). Let Wt represent the logarithmic return
over period [t− 1, t]. Then,

Wt = αt +
√

htJ̄t.

We now consider the moment generating function of Wt under Q:

EQ[ecWt |Ft−1] = EP
[
ecWt+rt

mt

mt−1

∣∣∣∣Ft−1

]

= EP
[
ecαt+c

√
htJ̄t+rt+a+bJt

∣∣∣Ft−1

]

= ecαt+rt+aEP
[
e
c
√

htX̄t
(0)

+bX
(0)
t +

∑Nt
j=1

(c
√

htX̄t
(j)

+bX
(j)
t )

∣∣∣∣Ft−1

]
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We know that

EP(c
√

htX̄
(0)
t + bX

(0)
t ) = 0

EP(c
√

htX̄
(j)
t + bX

(j)
t ) = bµ + c

√
htµ̄, for j = 1, 2, ...

V arP(c
√

htX̄
(0)
t + bX

(0)
t ) = c2ht + b2 + 2c

√
htbρ

V arP(c
√

htX̄
(j)
t + bX

(j)
t ) = c2htγ̄

2 + b2γ2 + 2c
√

htbργγ̄, for j = 1, 2, ...

Using these results, we obtain

EQ[ecWt |Ft−1] = exp
(

cαt + rt + a +
1
2
(c2ht + b2 + 2c

√
htbρ)− λt(1− κKt(c))

)
(39)

where Kt(c) has been defined in Proposition 1.

Now, let c = 0. Then,

1 = exp

(
rt + a +

b2

2
− λt(1− κ)

)

or, equivalently,

rt + a +
b2

2
= λt(1− κ)

Substituting this expression into equation (39), we obtain

EQ[ecWt |Ft−1] = exp
(

cαt +
1
2
(c2ht + 2c

√
htbρ)− λtκ(1−Kt(c))

)
(40)

Now let c = 1. Then EQ[eWt |Ft−1] = ert . Hence:

rt = αt +
1
2
ht +

√
htbρ− λtκ(1−Kt(1)),

from which:
αt +

√
htbρ = rt − 1

2
ht + λtκ(1−Kt(1)).

Hence:

EQ[ecWt |Ft−1] = exp
[
c

(
rt − 1

2
ht + λtκ(1−Kt(1))

)
+

1
2
c2ht − λtκ(1−Kt(c))

]

Let

α̃t = rt − 1
2
ht + λ̃t (1−Kt(1))

λ̃t = λtκ

We can write:
EQ[ecWt |Ft−1] = exp

[
cα̃t +

1
2
c2ht − λ̃t (1−Kt(c))

]
(41)
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Now consider the following system:

W̃t = α̃t +
√

htJ̃t

where

J̃t = X̃
(0)
t +

Ñt∑

j=1

X̃
(j)
t

Ñt ∼ Poisson
(
λ̃t

)

X̃
(0)
t ∼ N(0, 1)

X̃
(j)
t ∼ N(µ̄ + bργγ̄, γ̄2)

It is straightforward to verify that the moment generating function of W̃t is the same as that in
equation (41). Thus, under measure Q, Wt is distributionally equivalent to W̃t.

The volatility dynamic can be expressed in terms of J̃t using J̄t = J̃t + bρ, which can
be obtained via the return definition. Thus, ht = F (ht−i, J̃t−i + bρ; i = 1, 2, · · ·). The new
innovation J̃t has mean λ̃t(µ̄ + bργγ̄) and variance (1 + λ̃tγ̃

2), and thus requires the appropriate
standardization in the expression.
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Figure 1: Moneyness and Expiry Distributions 
 
The top figure shows the distribution of moneyness of all contracts, where moneyness is defined as the 
index price divided by the strike price. The bottom figure shows the histogram of days to expiration for all 
our contracts, over the time period from January 1996 to June 2005.  
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Figure 2:  Implied Volatility  

 
The top figure shows the time series of the volatility smile. In particular, the average actual implied 
volatility over the moneyness groups is computed for each month in the data set, and these values are 
plotted over time.  The bottom graph plots the average implied volatility for each moneyness group over 
the entire data period. The final graph plots the time series of the implied volatilities of the at-the-money 
contracts for each month over the time period from January 1996 (month 1) to June 2005. 
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Figure 3 

Q-Q Plots for Different Models 
 

Each daily return residual is first transformed into a uniform random variable using the appropriate 
conditional distribution function. The uniform random variables are then converted to standard normal 
random variables using the inverse normal transformation. The plots below are Q-Q plots that show 
deviations from normality. 
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Figure 4: In-Sample Residuals by Moneyness. 

 
The plots show pricing errors by moneyness for all models. In-sample pricing errors are computed as the 
difference between theoretical and actual implied volatilities, so negative values imply underpricing by the 
model. The plots show the residuals for the NGARCH-Jump (JGARCH), NGARCH-Normal (NGARCH), 
IG-GARCH and Merton models respectively.  The residuals are in-sample residuals covering the first half 
of the data period, namely the five years from January 1996. The moneyness bins were chosen so that the 
number of contracts in each bin was about equal. Bin 1 consists of deep out-the-money options with 
moneyness less than 0.86. The successive upper bounds for the bins are 0.90, 0.93, 0.95, 0.96, 0.98, 0.99, 
1.00, 1.01, 1.03, 1.04, 1.06 and 1.20.  
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Figure 5: Maturity Bias by Four Models 
 

The figure shows box-whisker plots of the pricing errors produced by maturity for four models. In-sample 
errors are computed as the difference between theoretical and actual implied volatilities, so negative values 
imply underpricing by the model.  For each maturity bucket there are four box plots ordered from left to 
right by the Merton model, the IG-GARCH model, the NGARCH-Normal model and the NGARCH-Jump 
model. The residuals are in-sample residuals covering the first half of the data period, namely the five years 
from January 1996.  The contracts with maturities exceeding 90 days were not used in estimation, and thus 
can be viewed as out-of-sample residuals.   
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Figure 6: Time Series of Implied Volatilities for Each Model 
 
For each month we obtain the theoretical prices for all contracts within one half percent of the index value. 
We update the volatility process daily based on the realized index price. Given the theoretical option prices 
we compute the Black-Scholes implied volatility for each contract. For each model we compute the average 
Black-Scholes implied volatility for the month. The time series of these averages are compared with the 
actual average Black-Scholes volatilities for the month.  The first figure is the Merton model, where the 
volatility is constant; the second figure is for the NGARCH-Normal model; the next figure is the IG-
GARCH model and the bottom figure is the NGARCH-Jump model. 
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Figure 7: Residuals by Year and by Model 
 

The figure shows the box plots of the residuals for at-the-money contracts for each model and for each year 
in the in-sample period for the first 5 years through year 2000, and in the out-of-sample period for the next 
5 years. The box plots in each year are from left to right are the NGARCH-Jump, NGARCH-Normal, IG-
GARCH, and Merton models, respectively. The parameters are estimated using option contracts with 
expiry dates less than 90 days over the period 1996 through 2000. The residuals used to compute the box 
plots are based off all contracts within one half percent of the strike price. The out-of-sample prices 
obtained after 2000 are based on parameters estimated using the data up through 2000.  
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Figure 8: Relative Out-of-Sample Performance of Models over Time  
 
The top figure shows the time series of monthly ratios of MSEs of the NGARCH-Normal (dashed line) and 
IG-GARCH (solid line) relative to the MSE of the NGARCH-Jump model. Panel B shows the time series 
of the monthly ratios of the MSEs of the IG-GARCH model relative to the MSEs of the NGARCH-Normal 
model. Ratios bigger than 1 indicate the superiority of the numeraire model. Month number starts from the 
first out-of-sample month in January 2001. 
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Figure 9: Relative Out-of-Sample Performance of Models by Moneyness 
 
The top figure displays a box plot of monthly ratios of MSE of NGARCH-Normal and IG-GARCH 
residuals relative to MSE of NGARCH-Jump residuals in each moneyness bin for all out-of-sample 
months. Ratios bigger than 1 indicate the superiority of the JGARCH model.  The bottom figure displays a 
box plot of monthly ratios of the MSE for the IG-GARCH model relative to the MSE of the NGARCH-
Normal model for all contracts in each moneyness bin, for all out-of-sample months. Ratios bigger than 1 
indicate the superiority of the NGARCH-Normal model.  
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Table 1: Distribution of Contracts by Moneyness and Maturity 
 
The top table shows the number of contracts in each moneyness-maturity bin in the in-sample from 1996 
through 2000. The bottom table shows the average implied volatilities.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Moneyness 
<31 31-60 61-90 >90 Total 

<0.86 191 438 326 264 1219
0.86   -    0.90 234 480 345 158 1217
0.90   -    0.93 272 491 331 125 1219
0.93   -    0.95 294 498 315 113 1220
0.95   -    0.96 285 511 313 109 1218
0.96   -    0.98 285 511 308 114 1218
0.98   -    0.99 273 526 311 108 1218
0.99   -    1.00 262 526 320 110 1218
1.00   -    1.01 274 521 324 104 1223
1.01   -    1.03 273 538 307 99 1217
1.03   -    1.04 261 532 308 117 1218
1.04   -    1.06 239 541 319 120 1219
1.06   -    1.09 225 537 326 132 1220
1.09   -    1.11 191 550 328 147 1216
1.11   -    1.15 166 550 339 166 1221
1.15   -    1.20 143 521 359 195 1218
1.20   -    1.30 141 507 356 214 1218
            >1.30 125 458 335 301 1219
Total 4134 9236 5870 2696 21936

Days to Expiration 

Moneyness 
<31 31-60 61-90 >90 Total 

<0.86 33.52 24.27 20.29 18.78 23.47
0.86   -    0.90 22.39 18.04 17.56 17.43 18.66
0.90   -    0.93 18.23 17.28 17.85 18.15 17.73
0.93   -    0.95 17.03 16.92 17.72 18.35 17.29
0.95   -    0.96 16.88 17.44 18.18 18.62 17.61
0.96   -    0.98 17.21 17.90 18.65 18.89 18.02
0.98   -    0.99 17.85 18.71 19.24 19.97 18.77
0.99   -    1.00 18.52 19.55 19.86 20.19 19.47
1.00   -    1.01 19.59 20.04 20.29 21.08 20.09
1.01   -    1.03 20.25 20.87 21.05 20.65 20.76
1.03   -    1.04 21.29 21.69 21.79 21.74 21.63
1.04   -    1.06 22.64 22.56 22.73 22.14 22.58
1.06   -    1.09 25.26 23.69 23.54 23.29 23.90
1.09   -    1.11 28.49 25.31 24.69 24.03 25.49
1.11   -    1.15 33.52 27.85 25.93 24.94 27.69
1.15   -    1.20 39.55 31.24 28.32 26.29 30.56
1.20   -    1.30 51.11 36.92 31.56 29.49 35.69
            >1.30 67.06 53.83 42.90 38.14 48.31
Total 24.39 23.97 23.04 23.63 23.76

Days to Expiration 
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Table 2: Parameter Estimates from the Time Series of Daily Returns 
 
The tables report the parameter estimates for the models based on time series over the time period starting 
in 1970 and over two sub-samples.  The Merton and NGARCH-Jump models are their restricted versions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Estimate Std. Dev. Estimate Std. Dev. Estimate Std. Dev. Estimate Std. Dev.
β0 2.73E-05 6.06E-07 1.13E-06 7.81E-08 1.71E-07 1.99E-08 -1.44E-06 1.661E-08
β1 9.08E-01 2.11E-03 0.91946 0.0033 -19.13300 5.819E-13
β2 5.62E-02 1.21E-03 0.04843 0.0012 4.08E-06 1.277E-10
β3 2.47E+07 2.305E-19
c 6.60E-01 1.20E-02 0.67556 0.0124

bρ -0.08347 6.71E-03 -0.03960 0.00327
λ 0.61160 1.60E-02 2.26560 0.0047
γ 1.9728 1.02E-02 1.35490 0.0073
µ -0.12294 7.86E-03 -0.0733 0.0107

δ -2.56E-01 0.0141

η -6.20E-04 1.070E-07

ν 1614.5 4.410E-14

ML Value 29745.3 30297.4 30457.6 30238.3
AIC Test -59480.6 -60584.8 -60899.2 -60464.6

Estimate Std. Dev. Estimate Std. Dev. Estimate Std. Dev. Estimate Std. Dev.
β0 3.48E-05 2.99E-07 1.62E-06 2.58E-08 1.34E-07 3.42E-09 3.32E-08 2.232E-09
β1 8.89E-01 7.59E-04 0.90912 0.0011 -19.20300 1.630E-13
β2 6.39E-02 7.77E-04 0.05407 0.0009 4.10E-06 3.438E-11
β3 2.47E+07 1.311E-19
c 7.22E-01 6.42E-03 0.71245 0.0039

bρ -0.06888 2.28E-03 -0.04088 0.00139
λ 0.50025 7.56E-03 2.27930 0.0037
γ 1.9412 5.07E-03 1.7435 0.0024
µ -0.091127 4.74E-03 -0.35940 0.0026

δ -1.07E-01 0.0021

η -6.14E-04 2.581E-08

ν 1632.4 5.645E-15

ML Value 21258.9 21595.2 21755.3 21560.8
AIC Test -42507.8 -43180.4 -43494.6 -43109.6

Estimate Std. Dev. Estimate Std. Dev. Estimate Std. Dev. Estimate Std. Dev.
β0 2.74E-05 2.12E-07 1.15E-06 1.26E-08 1.82E-07 2.47E-09 1.66E-08 2.155E-09
β1 8.86E-01 5.07E-04 0.88888 0.0007 -19.17000 9.200E-14
β2 5.64E-02 4.19E-04 0.05509 0.0004 4.07E-06 3.498E-11
β3 2.47E+07 7.312E-20
c 9.41E-01 6.63E-03 0.92969 0.0017

bρ -0.05992 3.05E-03 -0.03169 0.00129
λ 0.70446 6.77E-03 2.39300 0.0030
γ 1.9441 2.56E-03 1.3460 0.0008
µ -0.10091 5.30E-03 -0.13336 0.0032

δ -3.94E-01 0.0008

η -6.08E-04 2.258E-08

ν 1647.4 6.145E-15

ML Value 13060.4 13407.6 13464.7 13369.9
AIC Test -26110.8 -26805.2 -26913.4 -26727.8

1. Sample: 1/2/1970 - 12/30/2005

2. Sample: 1/2/1980 - 12/30/2005

3. Sample: 1/2/1990 - 12/30/2005

JGARCH IG-GARCH
Parameter

Merton NGARCH

NGARCH IG-GARCHJGARCHParameter Merton

JGARCH IG-GARCH
Parameter

Merton NGARCH
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Table 3: Descriptive Statistics on Residuals for Time Series Models 
 
The top table reports descriptive statistics on the normalized residuals for the four different time series 
models. If the models are appropriately specified, the residuals should be standard normal random 
variables. The bottom table presents the Ljung-Box tests on the residuals and squared residuals for lags of 
up to 5 business days. The tests of hypothesis on no autocorrelation were conducted at the 5% level, and the 
significant values are indicated with stars.  In addition to the full sample, tests are done in the two sub-
periods after the stock market crash in October 1987. 
 

Descriptive Statistics of Normalized Residuals 
 

 
 
 
 
 
 
 
 

 
 Ljung-Box tests for autocorrelation on residuals and squared residuals 
 

 
 
 
 
 

 
 
 

   

Residual Merton NGARCH JGARCH IG-GARCH
mean 0.003 0.000 0.001 -0.009
std 1.048 0.991 1.067 0.980
max 5.106 4.652 3.972 5.623
min -5.135 -6.570 -4.927 -5.222
skew 0.019 -0.152 -0.005 -0.172
excess kurtosis 0.248 1.247 -0.111 1.198

Test of Normality 
Kolmogorov-Smirnov Statistic 0.012 0.025 0.010 0.033
p value 0.005 0.000 0.027 0.000

1970-2005

Lag Auto- Box-Ljung Auto- Box-Ljung Auto- Box-Ljung Auto- Box-Ljung 
Correlation Statistic Correlation Statistic Correlation Statistic Correlation Statistic

1 0.099 89.91* 0.093 78.66* 0.099 89.44* 0.072 47.34*
2 -0.002 89.94* -0.004 78.81* -0.001 89.46* -0.025 53.04*

Residuals 3 -0.011 91.01* -0.011 79.86* -0.011 90.52* -0.021 57.07*
4 -0.012 92.30* -0.011 80.95* -0.012 91.84* -0.016 59.26*
5 -0.010 93.16* -0.008 81.51* -0.010 92.70* -0.003 59.37*

1 0.019 3.294 0.051 23.23* 0.014 1.775 0.110 109.93*
2 0.004 3.414 0.040 37.54* 0.000 1.776 0.160 343.32*
3 0.002 3.439 0.029 45.03* -0.001 1.779 0.096 426.66*
4 -0.003 3.514 0.010 45.91* -0.004 1.914 0.034 437.31*
5 0.005 3.709 0.044 63.28* 0.003 2.000 0.158 663.32*

1988-1995

Lag Auto- Box-Ljung Auto- Box-Ljung Auto- Box-Ljung Auto- Box-Ljung 
Correlation Statistic Correlation Statistic Correlation Statistic Correlation Statistic

1 0.036 2.612 0.029 1.721 0.036 2.569 0.022 0.953
2 -0.001 2.613 -0.002 1.728 -0.002 2.574 -0.014 1.340

Residuals 3 -0.039 5.760 -0.041 5.196 -0.039 5.638 -0.047 5.881
4 -0.029 7.520 -0.021 6.132 -0.031 7.584 -0.009 6.031
5 -0.017 8.106 -0.016 6.637 -0.018 8.235 -0.015 6.497

1 0.004 0.027 0.014 0.403 0.019 0.716 0.068 9.40*
2 -0.009 0.186 -0.008 0.526 -0.002 0.727 0.028 10.96*
3 -0.014 0.558 -0.010 0.713 -0.008 0.858 0.029 12.67*
4 -0.004 0.592 -0.001 0.714 0.005 0.913 0.032 14.80*
5 -0.007 0.690 0.008 0.833 -0.005 0.964 0.068 24.19*

1996-2005

Lag Auto- Box-Ljung Auto- Box-Ljung Auto- Box-Ljung Auto- Box-Ljung 
Correlation Statistic Correlation Statistic Correlation Statistic Correlation Statistic

1 0.011 0.320 0.008 0.171 0.012 0.344 -0.014 0.460
2 -0.012 0.663 -0.013 0.568 -0.011 0.663 -0.027 2.359

Residuals 3 -0.026 2.425 -0.026 2.213 -0.026 2.387 -0.028 4.308
4 -0.014 2.952 -0.007 2.355 -0.014 2.871 0.006 4.385
5 -0.034 5.872 -0.035 5.370 -0.034 5.753 -0.041 8.643

1 -0.025 1.546 0.004 0.043 -0.027 1.889 0.186 86.89*
2 0.026 3.217 0.044 4.867 0.024 3.382 0.187 175.50*
3 -0.007 3.352 0.008 5.032 -0.009 3.571 0.176 253.38*
4 0.009 3.567 0.012 5.421 0.009 3.784 0.120 289.99*
5 0.015 4.170 0.040 9.451 0.015 4.378 0.181 372.58*

Squared 
Residuals

Merton 

Squared 
Residuals

JGARCH IG-GARCH NGARCH Merton 

Squared 
Residuals

JGARCH IG-GARCH NGARCH

JGARCH IG-GARCH NGARCH Merton 
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Table 4: Estimates Using Time Series and Options 
 
The parameter estimates based on the time series analysis were used as initial starting points for the panel 
estimation optimization problem, where option prices were incorporated into the analysis. The options used 
were restricted to contracts within 5% of the strike and maturities less than 90 days. Option prices were 
taken monthly, and incorporated with daily return data as discussed in the text. The data used spanned the 
period from January 1996 through to December 2000.  For each model we report the point estimates, the 
standard deviations, the log-likelihood function (ML-value) and the Akaike Information Criterion (AIC) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Estimate Std. Dev. Estimate Std. Dev. Estimate Std. Dev. Estimate Std. Dev.
β0 1.38E-04 2.28E-06 2.34E-06 1.06E-08 1.59E-07 1.81E-08 9.33E-09 1.592E-06
β1 0.92994 6.23E-04 0.95110 0.0004 -19.47 6.118E-01
β2 0.03600 3.35E-04 0.03004 0.0051 3.89E-06 4.717E-08
β3 2.68E+07 1.739E+06
c 0.73599 0.085 -0.07674 0.0958

bρ -0.07033 3.57E-01 -0.06254 0.08321 -0.40798 0.1808
λ 0.91867 1.12E+00 0.38638 0.0722
γ 5.28E-07 4.91E-05 4.32200 0.2603
µ 0.3295 3.59E-02 -2.0920 0.9460

δ
η -5.99E-04 1.068E-05
η∗ -5.92E-04 1.095E-05

ν 1649.4 2.937E+01

γ 9.3426E-07 2.69E-11 0.41392 0.6866
Κ0 0.89314 1.09E+00 1.18600 0.2239
ω 0.041002 6.07E-07 0.02920 0.000054338 0.02469 5.063E-05 0.02819 9.155E-05

ML Value 3821.10 4533.90 4852.10 4465.05
AIC Test -7634.20 -9063.80 -9690.20 -8922.10

1/1996-12/2000

JGARCH IG-GARCHParameter Merton NGARCH
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Table 5:  Pairwise Comparisons of Models 
 
We compute the residuals for each contract using different models. For each pair of models, we record 
which model produces the smaller absolute residual.  We report the proportion of times the model indicated 
first, produces smaller absolute errors than the model indicated second. For example, for deep in the money 
contracts with maturities exceeding 90 days, the NGARCH-Jump (JGARCH) model beat the NGARCH-
Normal (NGARCH) model in the in-sample period 59% of the time. Values significantly different from 
50% are bold-faced.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Expiry deep out out at in deep in Total Expiry deep out out at in deep in Total 

<30 0.47 0.57 0.53 0.64 0.73 0.58 <30 0.47 0.66 0.51 0.44 0.60 0.53
30-60 0.55 0.53 0.59 0.68 0.75 0.64 30-60 0.54 0.69 0.54 0.44 0.60 0.57
61-90 0.59 0.54 0.59 0.62 0.65 0.61 61-90 0.58 0.63 0.53 0.48 0.60 0.58
>90 0.61 0.48 0.47 0.50 0.62 0.59 >90 0.64 0.59 0.51 0.44 0.57 0.60
Total 0.55 0.54 0.57 0.64 0.70 0.61 Total 0.56 0.67 0.53 0.44 0.59 0.57

<30 0.46 0.49 0.53 0.66 0.74 0.58 <30 0.58 0.71 0.63 0.49 0.66 0.62
30-60 0.51 0.52 0.61 0.69 0.75 0.64 30-60 0.61 0.76 0.70 0.57 0.67 0.65
61-90 0.58 0.56 0.59 0.63 0.71 0.63 61-90 0.63 0.72 0.70 0.63 0.66 0.66
>90 0.61 0.61 0.54 0.68 0.75 0.67 >90 0.71 0.80 0.74 0.71 0.64 0.69
Total 0.53 0.53 0.58 0.67 0.74 0.63 Total 0.63 0.74 0.69 0.57 0.66 0.65

<30 0.54 0.61 0.65 0.68 0.86 0.67 <30 0.67 0.87 0.82 0.81 0.85 0.78
30-60 0.60 0.67 0.70 0.72 0.89 0.75 30-60 0.71 0.86 0.82 0.82 0.87 0.80
61-90 0.62 0.67 0.70 0.74 0.89 0.76 61-90 0.75 0.81 0.81 0.83 0.88 0.81
>90 0.66 0.79 0.74 0.68 0.92 0.80 >90 0.73 0.83 0.81 0.70 0.84 0.78
Total 0.60 0.67 0.69 0.71 0.89 0.74 Total 0.72 0.85 0.82 0.81 0.87 0.80

<30 0.45 0.45 0.47 0.55 0.49 0.47 <30 0.61 0.63 0.66 0.57 0.46 0.57
30-60 0.49 0.49 0.43 0.44 0.48 0.47 30-60 0.63 0.78 0.71 0.65 0.54 0.63
61-90 0.53 0.53 0.47 0.45 0.50 0.50 61-90 0.65 0.75 0.72 0.66 0.54 0.63
>90 0.55 0.58 0.51 0.54 0.54 0.55 >90 0.65 0.80 0.76 0.78 0.58 0.65
Total 0.50 0.50 0.46 0.48 0.49 0.49 Total 0.64 0.74 0.70 0.64 0.53 0.62

<30 0.56 0.65 0.65 0.57 0.64 0.61 <30 0.70 0.86 0.83 0.80 0.67 0.74
30-60 0.61 0.66 0.62 0.62 0.73 0.66 30-60 0.70 0.85 0.83 0.81 0.75 0.76
61-90 0.61 0.65 0.63 0.67 0.80 0.70 61-90 0.73 0.81 0.81 0.82 0.81 0.78
>90 0.63 0.80 0.81 0.69 0.85 0.77 >90 0.65 0.85 0.84 0.76 0.83 0.74
Total 0.60 0.67 0.65 0.63 0.75 0.68 Total 0.70 0.84 0.82 0.80 0.76 0.76

<30 0.59 0.72 0.71 0.70 0.64 0.65 <30 0.65 0.89 0.85 0.82 0.72 0.75
30-60 0.64 0.74 0.68 0.64 0.72 0.69 30-60 0.67 0.85 0.85 0.80 0.77 0.75
61-90 0.65 0.71 0.69 0.69 0.80 0.72 61-90 0.74 0.79 0.75 0.76 0.80 0.76
>90 0.63 0.71 0.67 0.65 0.82 0.73 >90 0.65 0.78 0.71 0.56 0.75 0.69
Total 0.63 0.72 0.69 0.67 0.75 0.70 Total 0.68 0.84 0.82 0.78 0.77 0.75

In-Sample Comparisons Out-Sample Comparisons 

NGARCH vs Merton  

IG-GARCH vs Merton  

JGARCH vs NGARCH

JGARCH vs IG-GARCH

JGARCH vs Merton 

NGARCH vs IG-GARCH 

NGARCH vs Merton  

IG-GARCH vs Merton  

JGARCH vs NGARCH

JGARCH vs IG-GARCH

JGARCH vs Merton 

NGARCH vs IG-GARCH 


