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Abstract

Dynamic macroeconomic models should by design be amenable to sce-
nario analyses under some stated policy objectives or presumed stress en-
vironment. However, such analyses are difficult to conduct mainly due to
the technical complexity associated with partially conditioning on a future
scenario. In this paper, we devise a generic and efficient bridging sampling
method that is flexible with scenario setting while accommodating parameter
uncertainty. We demonstrate that models with comparable forecasting perfor-
mance can have very different implications under a policy scenario. Dynamic
scenario analysis thus provides a new angle for discriminating competing
models with a specific reference to real-world usage.

Keywords: sequential Monte Carlo, density tempering, parameter uncer-
tainty, Gaussian models, inflation targeting, conditional forecast.

∗Duan is with National University of Singapore (Department of Finance, Risk Management
Institute, and Department of Economics). E-mail address: bizdjc@nus.edu.sg.
†Zhu is with National University of Singapore (Risk Management Institute). E-mail address:

yanqi.zhu@u.nus.edu.
The authors acknowledge the comments received at the 28th Australia New Zealand Econo-

metric Study Group Meeting and 26th Symposium of the Society of Nonlinear Dynamics and
Econometrics.



1 Introduction

Scenario analysis in this paper refers to the study of the set of possible paths in
the probability sense leading towards a targeted or hypothetical event/scenario.
Since its introduction by Herman Kahn back in 1950s, scenario analysis has long
been a popular strategic planning technique and alternative approach to business
forecasting. According to an early survey of Linneman and Klein (1983), the use
of scenario analysis among Fortune 100 corporates had increased rapidly from
about 10% in 1974 to 50% by 1981. The topic itself also attracts continuous interest
and attention from academic researchers. In Huss (1988), the author presents a
comprehensive discussion on the weaknesses of conventional forecasting exercise
that can be potentially addressed by scenario analysis. For instance, instead of
providing confidence bands around a single view of the future which is typically
the case with conventional forecasting, scenario analysis can be applied to gen-
erate completely different but plausible future situations to enable contingency
planning and provide possible early warnings. Subsequent research in business
management literature has been devoted to refine the scenario construction and
prediction process, but mostly in qualitative sense.

Despite the various advantages scenario analysis has over conventional fore-
casting exercises, it does not receive as much attention as it deserves in macroe-
conomic studies, especially in policy analysis. Modern macroeconomic research
focuses on two mainstream applications in producing unconditional forecasts and
structural (shock) analysis. However, both applications have limitations on the
extent to which they can directly address policy issues, and naturally fail to meet
the needs of policymakers. Shock analysis through the study of impulse responses
delivers meaningful economic interpretation regarding model dynamics, which is
helpful in understanding the interrelationship among macro variables. In terms
of giving instructive policy guidance, however, it is of little practical use as shocks
are mostly unobserved and hard to quantify. From time to time, forecast is carried
out by policymakers to serve the interest of predicting the future, and a great
deal of effort has been devoted by researchers to improving economic forecasting
accuracy. However, it is of limited use to policy makers as their objective is to
shape the future, instead of merely knowing it.

As pointed out by Adolfson et al. (2007), for macro models to be used in
providing basis for policy decisions, their benefits have to be clearly demonstrated
in situations that policy advisors recognize. When policymakers initiate a new
policy, they have an objective in mind which may or may not be publicly stated.
For example, maintaining price stability is one of the most commonly recognized
macroeconomic objectives. It has been adopted by major developed economies
including the United States (since January 2012) and Japan (since January 2013).
To justify their 2% inflation target, central bankers need to be clearly informed
about its consequences. In other words, they look for an analysis which can
tell them what could happen or how an economy would look like when they
move from current state to the target scenario. It is here that scenario analysis
can play an important role in addressing directly the macro objective and in
providing a basis for subsequent decisions made. Furthermore, such analysis
also provides meaningful insights for non-policymakers like firms and general
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public, to help them interpret information and form expectations based on the
announced policy objective. After an objective has been set, there may be a set
of alternative adjustment tools to choose from. Conducting so called ’policy
simulation’ is appealing to policymakers in understanding the pros and cons
of each tool, and scenario analysis provides a natural tool for doing so. In fact,
many forecasting exercises nowadays incorporate ’off-model’ information such as
assumption about future interest rate. To mention a few, the official reports from
U.S greenbook forecast, Riksbank and Bank of England all contain simulations
conditioned on either a constant future interest rate, or a rate path inferred from
market expectation. All these cannot be done with the usual shock analysis and
conventional forecasting exercise.

Stress testing is another good example to illustrate the importance of scenario
analysis. By testing the vulnerabilities of financial institutions under hypothetical
stressed scenarios, policymakers could be forewarned against potential risk and
take precautionary move to avoid undesirable consequences. Because of this,
stress testing has become a regulatory requirement for the banking industry in
the U.S. and some other jurisdictions after the global financial crisis in 2008.

Scenario study can be a powerful technique that facilitates policy analysis,
yet it is not widely applied in current macroeconomic studies. This is possibly
due to the reason that modern macroeconomic research relies extensively on
complex dynamic models but lacks of a generic and efficient algorithm that
can generate model-consistent scenario analysis results. Technically speaking,
such analysis requires the analyst to be able to simulate the economy while
respecting restrictions imposed on some endogenous observables at a future
time. Sampling of a dynamic model under a future scenario immediately faces
analytical intractability of the conditional distribution/density function of the
target model even for high-dimensional linear Gaussian systems, and becomes
particularly challenging with the added parameter uncertainty. This makes direct
sampling from the target conditional density a difficult task if not impossible.

A number of research articles have attempted to devise such sampling algo-
rithm, but all of them face some kinds of limitation. The literature is known as
conditional forecasting. Waggoner and Zha (1999) provides the earliest solution
for conditional forecasts under VAR models while considering parameter uncer-
tainty. According to Jarociński (2010) and Bańbura et al. (2015), this algorithm
is not computationally efficient, and can easily become impractical or infeasible
for high dimensional data. Subsequent research such as Bańbura et al. (2015)
proposes the use of Kalman filter technique as a simulation smoother, and Maih
(2010) proposes an approach that can handle soft ending conditions. According to
Maih (2010), all Kalman filter based algorithms can only deal with hard ending
conditions, i.e, a fixed future value but not a set of values. All the available ap-
proaches share one commonality; that is, they rely on solving the exact conditional
distribution of a complex system in some analytical form. Their applicability is
thus restricted to linear Gaussian systems, and the derivation task is usually quite
involved and model-specific. In fact, until today, there exists no generic algorithm
that can be easily extended to non-linear and/or non-Gaussian models.
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In this paper, we propose a generic and efficient sampling method for dynamic
scenario analyses. This method relies on the bridge sampling technique of Duan
and Zhang (2016), which is built on an explicit recognition that the sampling diffi-
culty does not reside with the joint distribution/density function of the system,
but rather with the complexity of the probability/density for the conditioning
event. However, the latter can be treated as an irrelevant norming constant
when an importance sampling scheme is deployed. The basic idea behind im-
portance sampling is that sampling from the target distribution is equivalent
to sampling from a different proposal distribution with the correct importance
weights. Such scheme in general consist of three steps: (1) drawing initial particles
from a proposal density, (2) assigning them the correct importance weights and
(3) resampling according to the weights.

In our scenario analysis context, each particle is a set of bridge paths for
observables and our target distribution is their conditional density given the
scenario-defined condition. The proposal density is associated with a generating
model that comprises two parts – (1) a convenient Gaussian bridge to approximate
the driving process defining the future scenario, say, inflation rate process, and (2)
a companying Gaussian system approximately describing the remainder (output,
employment, interest rate, etc.) conditional on the driving process. The generating
model can be easily sampled, and the final set of sample paths under the target
model and meeting the condition defined by the future scenario can be obtained
by closing the gap between the target and generating models sequentially with
a density-tempering technique without having to know the conditional proba-
bility/density of the defining scenario, i.e., an irrelevant norming constant. We
further extend this method to a general state-space setting with latent variables
and account for parameter uncertainty by allowing for Bayesian updating on the
parameter values influenced by the occurrence of future scenario. It is also flexible
in accommodating both hard and soft ending conditions and can easily deal with
degenerate state-space models.

The flexibility of our bridge sampling method enables a scenario-based study
of different models. There has been continuous debate on the relative forecast-
ing performance between reduced-form econometric models like vector auto-
regression (VAR) and more theory-based structural models such as dynamic
stochastic general equilibrium models (DSGE). On the one hand, VAR models
especially unrestricted ones, are said to be most flexible in matching historical data
and hence should deliver more accurate forecast if the interrelationship among
model variables remain stable. On the other hand, DSGE models incorporate
forward looking behavior of economic agents and are said to provide more in-
terpretable and accurate prediction on shock responses if the decision-making
processes are modeled correctly. In Smets and Wouters (2007), the authors show
that their 14-variable DSGE model produces comparable marginal data likelihood
and forecast performance as a 4th order Bayesian VAR model and an unrestricted
VAR(1) model using seven U.S. macro data series (GDP, consumption, investment,
labor, wage, inflation and interest rate) from 1966:Q1 to 2004:Q4.

In our empirical analyses, we first re-examine the conventional forecast per-
formance of the three models using extended US data from 1966:Q1 to 2017:Q4.
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We find that the DSGE model continues its superior performance during the
Great Recession (December 2007 - June 2009) but loses out to the BVAR(4) model
in subsequent recovery/expansion period. After that, we perform a scenario-
based study of these three competing models, focusing on investigating how they
perform differently under inflation targeting and interest rate scenarios. Since
dynamic scenario analysis is much more demanding on the model dynamics, it is
conceivable that the outcomes of the three models will be different. Indeed, our
empirical results suggest that under the same inflation target, predicted paths
for the remaining six observables, computed at the end of the data sample, i.e.,
2017:Q4, vary across models. For example, the predicted growth rate of real wage
from the DSGE model is about twice of the rate predicted by the other two VAR
models throughout the four quarters in 2018.

In reaction to the bursting of the Dot-com bubble, the US Federal Reserve
lowered the policy rate 11 times in 2001 from 6% to around 2%. As expected, the
unconditional forecast under all three models fails to predict such drastic rate cuts,
and by extension also fails to forecast other macro variables. Conditional forecasts
of the three models based on the realized interest rate of 2.1% at the end of 2001,
however, perform quite differently. Both VAR(1) and BVAR(4) models produce
conditional forecasts on other macro variables matching closer to their actual
realizations. Surprisingly, the prediction from the DSGE model becomes even
worse with conditioning on the realized interest rate, supporting our contention
that scenario analysis may serve as a powerful way of discriminating competing
models.

2 Macroeconomic models and scenario analysis

Dynamic macroeconomic models are generally classified as reduced-form econo-
metric models, like VAR, or structural models such as DSGE. Both VAR and
DSGE models have been widely used to perform forecasting and structural analy-
sis. There are a number of papers addressing the differences between these two
approaches, and comparing their unconditional forecasting performance. The
general conclusion is that forecasts from DSGE models are not more accurate
than times series models, but neither are they any worse. Wickens (2014) argues
that this is due to the dynamic structure in the solution of DSGE models. Their
backward-looking dynamics gives them a forecasting performance similar to time
series models and their forward-looking dynamics, which consists of expected
value of future endogenous variables, is difficult to forecast accurately.

Dynamic scenario analysis is much more demanding on the model dynamics.
Hence, whether the conclusion for conventional forecast performance can still
hold under scenario analysis is an interesting question. In contrast with the large
literature on conventional forecast studies, little attention has been paid to macro
scenario analyses due to the technical complexity of sampling conditional bridge
paths. For a simple process like AR(1) with Gaussian innovations, the exact bridge
distribution can be easily derived. But with a larger-dimensional VAR or the DSGE
model, the exact solution may become analytically messy. If the model in question
is nonlinear or non-Gaussian, the exact solution becomes analytically intractable.
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Hence, developing a versatile, easy-to-implement and reliable bridge-sampling
method will be critical to dynamic macro scenario analyses.

In this section, we first describe the general econometric framework for both
VAR and DSGE models. Then we show how they can be cast into the linear
state-space form comprising (1) a VAR(1) process driving the state variables
and (2) a measurement equation linking the state variables to the observable
measures. After that, we present our bridge sampling method under the state-
space setting. To facilitate our discussion, we use inflation targeting as an example
of conditioning scenario, and illustrate our algorithm based on the state-space
representation of the VAR(1) model in Smets and Wouters (2007). Subsequently,
we highlight the robustness of our method in dealing with soft conditions and
degenerate state-space models such as the DSGE model of Smets and Wouters
(2007). Finally, we make comparison to an alternative method, i.e., rejection
sampling, when it is possible.

2.1 VAR, DSGE and their linear state-space representation

A general n-dimensional VAR(p) model is of the form:

yt = A +
p

∑
l=1

Blyt−l + et (1)

et ∼N(0, Σe)

where yt = (y1,t, y2,t, . . . , yn,t) denotes the vector of observations at time t. A is
the constant term if any. Bl, l = 1, 2, . . . , p are the autoregressive matrices, each
with a dimension n× n, and the residual et follows a white noise process with
mean 0 and covariance matrix Σe.

Since the publication of Sims (1980), VAR models have been widely used to
provide empirical benchmark for structural models, in both forecasting exercise
and structural analysis. However, as pointed out by Bańbura et al. (2015) and
many other papers, the availability of huge data sets nowadays raises a trade-off
between the excessive simplicity of the models, leading to mis-specification due to
omitted variables, and their excessive complexity, with many free parameters lead-
ing to a large estimation uncertainty. To be specific, in the above n-dimensional
VAR(p) model, without any restrictions on the parameters, we have n× (n× p+ 1
parameters from vector A and autoregressive matrices Bl, l = 1, 2, . . . , p, and
n×(1+n)

2 parameters from covariance matrix Σ to be estimated. This leads to un-
reliable estimation and inference if either the dimension or the order of lags is
large comparing to the data length. This is commonly referred to as the ’curse of
dimensionality’ for VAR models. To mitigate this problem, the Bayesian approach
has been introduced to combine information from the data and some prior belief
on model parameters. It results in the estimates shrinking towards their prior
expectations, which usually come from economic theories or previous empirical
results.

(B)VAR models can be straightforwardly converted to state-space formulation.
For first order (B)VAR models, the auto-regressive process itself provides the state
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transition equation. And the state variables is identical to the observables because
there is no latency in the system. That is:

st =A + B1st−1 + et

yt =st (2)
et ∼N(0, Σe).

For a general p-th order (B)VAR model given in (1), we first write the model into
VAR(1) form:


yt

yt−1
...

yt−p+1

 =


A
0
...
0

+


B1 B2 . . . . . . Bp
I 0 . . . . . . 0

0 . . . . . . ...
... . . . . . . . . . ...

0 . . . 0 I 0




yt−1
yt−2

...
yt−p

+


et
0
...
0

 . (3)

By denoting:

st =


yt

yt−1
...

yt−p+1

 , Ã =


A
0
...
0

 , B̃ =


B1 B2 . . . . . . Bp
I 0 . . . . . . 0

0 . . . . . . ...
... . . . . . . . . . ...

0 . . . 0 I 0

 , ẽt =


et
0
...
0

 ,

the state-space representation for a n-dimensional (B)VAR(p) model can be written
as:

st =Ã + B̃st−1 + ẽt

yt = [I 0 . . . 0] st

ẽt ∼N

0,


Σe 0 . . . 0
0 0 . . . 0
...

... . . . ...
0 0 . . . 0




In the above, I is the n-dimensional identity matrix. Note that for the linear state-
space model converted from a (B)VAR process, it is always degenerate due to the
absence of measurement error. In other words, the state variable st contains no
more information than yt, and its lags is converted from a higher-order (B)VAR.

Both VAR and BVAR models are unavoidably subject to ’Lucas critique’, which
argues that such econometric models should not be used for structural analysis as
it has no economic theory behind, and past data cannot be representative of future
reactions to new shocks. Such criticism motivated the development of structural
models with micro foundations. DSGE is one of them, and it has become a very
popular approach in macro analysis. In particular, the DSGE model developed
by Smets and Wouters (2007), which was originally used to explain US macro
fluctuation, has become the benchmark model for many subsequent structural
analyses.
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There are a few ways to solve DSGE models, one commonly used approach
involves log-linearization of the model and rewrite it into the canonical linear
rational expectation form:

G0st =G1st−1 + D1 + Ω1zt + Ω2ηt

zt ∼N(0, Σz).

where st denotes the state variables, which includes all endogenous variables
and artificial variables that are necessary to make the linearized model a VAR(1)
representation. zt denotes the exogenous variables (shocks) with mean zero and
covariance Σz, and ηt is endogenously determined one-step-ahead expectation
errors. Solving the model according to Sims (2002) gives rise to the following
solution:

st =Gst−1 + D + Ωzt (4)
zt ∼N(0, Σz)

with matrix G and Ω being functions of the original structural parameters to
provide identification. As seen from the above equation, the dynamic of the DSGE
model is essentially a VAR(1) process with latency. The observable measures are
linked to state variables st through a measurement equation:

yt =F + Mst + vt (5)
vt ∼N(0, Σv)

where F is the constant term, M is the selection matrix and vt represents the
measurement error if any. The forms of parameter matrices and vectors are
specific to a DSGE model such as Smets and Wouters (2007).

2.2 Inflation targeting – an example

Price stability is the most well-recognized policy objective around the world with
more than 28 countries adopting an explicit inflation target. Here we take the 2%
annual inflation target set by the US as an example, and demonstrate the idea of
our bridge sampling method based on the VAR(1) model of Smets and Wouters
(2007). Implementation details for general state-space models are provided in
Appendix A.

The state-space representation of the VAR(1) model of Smets and Wouters
(2007) is given by equations in (2), with yt being the seven-dimensional observable
variable:

yt =



dlGDPt
dlCONSt
dlINVt
dlWAGt

lHOURSt
dlPt

FEDFUNDSt


(6)

where l and ld stand for 100 times log and log difference, respectively. dlPt,
lHOURSt and FEDFUNDSt correspond to the inflation, labor input and the
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federal funds rate. Inflation is calculated as the log difference of the GDP de-
flator and labor input is measured by log hours worked (demeaned). dlGDPt,
dlCONSt, dlINVt and dlWAGt denote the log differences in output, consumption,
investment and wage. All observed series are in quarterly frequency.

Suppose at time T, we are interested to know how the US economy would
look like conditional on achieving its annual inflation target of 2%. Given the
data frequency and definition in Smets and Wouters (2007), 2% annual inflation
is equivalent to ∑T+4

t=T+1 dlPt = 2. Hence we want to simulate the model by
generating sample bridge paths subject to that condition. In order to make use
of the notations and formulas in Appendix A, we cast the VAR(1) model in our
general state-space formulation in equations (7)-(8) with C = A, B = B1, Ω = I,
εs

t = et, Σs = Σe, µ = 0, M = I, and zero measurement error.

Our bridge-sampling method relies on that of Duan and Zhang (2016), where
the key is to use the Sequential Monte Carlo (SMC) method. SMC refines upon
an importance sampling algorithm by tempering the importance weights in a
sequential manner. This is to mitigate the sample impoverishment issue caused
by uneven weights. Furthermore, to reduce duplicated particles after resampling,
a support boosting step is implemented to restore sample diversity. Our method
adapts that of Duan and Zhang (2016) to a general state-space setting and adds
parameter uncertainty that is expected in real-world applications. Parameter
uncertainty is handled by augmenting the space describing the bridge paths of
observables with the model parameter space. To adapt the method to a general
state-space setting, we further extend the space to include paths for unobserved
state variables because they form part of the information set needed for advancing
the model forward. Notice that by the transition equation, the state variables and
its innovation terms are equally informative once the previous state is known.
Hence in the augmented system, we can substitute the paths for unobserved
states by the paths for its innovation term plus the initial state at T. We show in
Appendix A.5 that this substitution makes it more convenient in dealing with
degenerate models. In summary, our complete augmented space includes (1) the
bridge paths for the observable variables, (2) the model parameters, (3) the initial
state variables at T, and (4) the paths for shocks from T + 1 onward.

Algorithmically, we start with an initialization sampler that is associated with
a ‘wrong’ approximating model but easy to sample from. In our VAR(1) example,
the initialization for model parameters comes from the frequentist asymptotic
distribution. And the initial state sT simply equals to yT. As for the bridge paths
for the observables and shocks, their initialization consists of two steps. In the
first step, we assume that the conditioning variable, which is dlPt in our inflation
targeting example, follows a Gaussian AR(1) process while knowing it is untrue.
Then the bridge distribution conditional on the scenario ∑T+4

t=T+1 dlPt = 2% can
be analytically derived.1 In the second step, the paths for the remaining six
macro variables can be sampled with a companion system obtained by a simple
decomposition given by equations (12)-(14) in Appendix A.1 while the paths for
shocks are sampled according to equations (15)-(16).

1The derivation is similar to how we derive equation (11) in Appendix A.1. The analytical
formula is available upon request.
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Following the idea of importance sampling, the points from our initialization
sampler are legitimate when coupled with the correct importance weights, which
is the ratio of their density under the target model over that under the initialization
sampler. (See equation (21) in Appendix A.2) These two densities can be evaluated
with equations (9) and (20). The key to the method is to recognize that the last term
in the target density formula, i.e., the probability of hitting the inflation target,
is actually an irrelevant constant as far as importance sampling is concerned.
Moreover, the density of the initial state also disappears from the likelihood ratio
through cancellation.

The importance weights are likely to be uneven across the sampled points
due to the difference between the target model and the generator. Therefore,
density tempering the likelihood ratio in a sequential manner will be needed, and
resampling at each intermediate stage must also be conducted to even out the
importance weights so as to prevent sample impoverishment. The tempering se-
quence is chosen adaptively to ensure a certain variety of points being resampled.
After each resampling step, one also needs to boost the empirical support through
performing the Metropolis-Hastings (MH) moves to restore sample diversity.
Implementation details for density tempering and support boosting are provided
in Appendix A.2-A.3.

It is worth noting that the above bridge-sampling method can be easily im-
plemented if the parameter is treated as known, for example, the typical practice
of deploying the point estimate for the parameter. Algorithmically, one simply
skips the step of sampling parameter in both initialization and support boosting.
The likelihood ratio formula becomes even simpler, with the densities of model
parameters dropped out and all other terms evaluated at the fixed parameter
value.

While simulating the economy under this 2% inflation target, some may take
a shortcut by assuming a constant path for inflation. However, as criticised by
Waggoner and Zha (1999), that means the conditioning variable is assumed to
stop responding to the state of the economy and become exogenous at each and
every forecast date, which may violate the dynamic of the given model. Moreover,
policy objectives are rarely specified as a fixed path, instead, they are usually given
as a target level or range over a particular time period. For instance, according
to the Bank of England, a target of 2% does not mean that inflation will be held
at this rate constantly. That would be neither possible nor desirable. Instead, the
Monetary Policy Committee’s aim is to set interest rates so that inflation can be
brought back to target within a reasonable time period, say one year, without
creating undue instability in the economy. Note that our method only restricts
the annual inflation to be 2% while allowing the paths in-between to be flexible
while respecting the model dynamics. Therefore, we are able to address policy
objectives in a more natural and logically consistent way that better mimics the
reality.
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2.3 Dealing with soft conditions and degenerate linear state space
models

In real-life applications, many policy objectives or stressed scenarios are specified
as a range or interval instead of a single value. One recent example is that India
announced their inflation target to be 4% with a tolerance interval of ±2% for
the next five years until 2021. This type of range scenario is defined as soft
condition in Waggoner and Zha (1999). The simulation algorithm proposed in
their paper that deals with soft conditions is essentially a simple rejection method
with some variance reduction technique. It is highly inefficient as it generates
many unsatisfactory paths that are rejected eventually.

In contrast, our bridge-sampling method is flexible and can accommodate soft
conditions with just one additional sampling step. Recall that in the initialization,
we need to draw bridge paths for the conditioning variable, i.e. dlPt in this
example, based on its estimated AR(1) process. The bridge process depends on
the value of the scenario constraint’s expression, which in this case is the sum of
quarterly inflation in the subsequent four periods. In the case of hard condition
discussed above, ∑T+4

t=T+1 dlPt = 2% is the only permissible value. With a targeted
range of 4± 2% as in the case of India, it implies ∑T+4

t=T+1 dlPt ∈ [2%, 6%]. Before
drawing the bridge paths for inflation, one simply samples the sum ∑T+4

t=T+1 dlPt
according to a truncated normal distribution defined by the target range.

Degeneracy typically requires more care due to the presence of the Dirac delta
function in the density formula. However we show in Appendix A.5 that this
does not cause any numerical difficulty to our bridge sampling method. There are
two types of degeneracy that could arise in the general state-space formulation
in equations (7)-(8). One is caused by zero measurement error, i.e., observable
yt is deterministic given st. This is always the case for (B)VAR models because
they assume no latent states. The other type of degeneracy is associated with
dimension mismatch between the state variable st and the its driving shocks, εs,t.
This is quite common in state-space representations converted from DSGE models
including Smets and Wouters (2007). This model has 14 endogenous variables
driving by seven exogenous shocks. To express it as an autoregressive process of
order one, we need to translate it into a 50-state variable VAR(1) transition system
with the innovation εs,t being seven-dimensional. In addition, the DSGE of Smets
and Wouters (2007) assumes no measurement error. Thus it contains both types
of degeneracy, and we use it to illustrate in details how to deal with degeneracy
in Appendix A.5.

2.4 Rejection Sampling

Rejection sampling is an alternative approach to scenario analysis when the
scenario is defined by a soft ending condition, and hence can be used to provide
a quality check on our bridge sampling method. When there is no parameter
uncertainty and no latent state, it is easily implemented by simulating the model
forward in the unconditional manner and reject those paths that fail to meet
the scenario condition. However, when the conditioning band is narrow, this
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rejection method will become highly inefficient as it generates many unsatisfactory
paths that are rejected. If the conditioning band contains a single point, i.e., hard
conditions, rejection sampling will be infeasible as the probability of hitting a fixed
ending point is essentially zero. Furthermore, with parameter uncertainty and
under state-space setting, rejection sampling becomes much more complicated. It
involves drawing model parameters from the conditional distribution given the
scenario condition. And when initial state is not fixed, it also requires sampling
sT from the smoothed distribution conditional on historical observations, scenario
condition and drawn parameter values.

3 Applications

In this section, we demonstrate how dynamic scenario analysis can provide in-
sights for policy makers under a well-recognized macro objective. The analysis is
applied to three models: the unrestricted VAR(1), BVAR(4) and DSGE models from
Smets and Wouters (2007). We show that models with comparable forecasting
power can provide qualitatively different inferences under the same conditioning
scenario. We also provide performance comparison of the three models on sce-
nario analysis versus unconditional forecast, as well as statistical properties using
root mean squared error (RMSE) over various time spans.

3.1 Data, estimation and quality check

Our dataset consists of the same seven U.S. macro variables as in Smets and
Wouters (2007), which include: log difference of output, consumption, investment
and wage, log hours worked (demeaned), inflation and federal funds rate. All
series are in quarterly frequency and extended to cover the period from 1966:Q1
to 2017:Q4. For detailed data definition, construction and sources of data, one
may refer to Herbst and Schorfheide (2015).

The estimation for the unrestricted VAR(1) and BVAR(4) follows that of Smets
and Wouters (2007) exactly, whereas for the DSGE model we adopt the Sequential
Monte Carlo approach proposed by Herbst and Schorfheide (2014).1 The DSGE
model estimation results are presented in Appendix B, and we compare them with
the posterior distribution documented in Smets and Wouters (2007) which used
data before 2005. We find that the standard errors for risk premium, exogenous
spending, investment, and monetary policy shocks are lower than the estimates
using data before 2005, whereas that for wage mark-up shock is substantially
higher. In addition, the productivity, risk premium and investment shocks are
more persistent than before. As for the structural parameters, the cost of capital
adjustment falls but the cost of capital utilization adjustment cost rises. There is
less habit formation after 2005, and the degree of both price and wage stickiness
increases. Furthermore, the steady state growth rate is lower than before.

1For prior implementation for the BVAR model, linearized DSGE model equations and prior
distributions, see Smets and Wouters (2007).
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Before demonstrating the use of our bridge sampling method on a real policy
scenario, we first ascertain the quality of the technique by comparing it with
rejection sampling. To avoid the complexity in dealing with parameter uncertainty
in the rejection method, our quality check is performed with fixed parameter
values. For the DSGE model, we also assume the initial state is fixed by using the
mean value of the filtering distribution. We apply both sampling methods to the
scenario that requires the inflation in 2018 to be within the range between 5% and
5.5%. It is worth noting that more than 99% of the generated paths under rejection
sampling were tossed away because they failed to meet the scenario condition.
Figures 5 and 6 in Appendix C present the quantile-to-quantile (QQ) plots of the
two empirical distributions (bridge sampling vs simple rejection sampling) from
the VAR(1) and DSGE models, based on 10,000 paths. We show the results for
all seven observables at three different future time points. The results reveal that
the paths drawn from the bridge sampler match well with those generated by
the rejection sampler. To conserve space, we omit the QQ-plots for the BVAR(4)
model.

3.2 Application on inflation targeting

Inflation targeting is a monetary policy framework pioneered in New Zealand in
1990, with currently more than 28 countries adopting it. In order to ensure central
banks’ accountability, policy authorities establish explicit quantitative inflation
targets for a specific period ahead. As an illustration, using the models estimated
in section 3.1, we perform scenario analysis to see how the US economy evolves
under the condition that inflation in 2018 hitting the 2% official target. We present
in Figure 1 the empirical results from all three models in one combined graph for
easy comparison.

The upper panel of Figure 1 plots the predicted paths for the seven observables
over 2018. It suggests that even under the same annual inflation rate target,
predicted trends on major economic indicators vary across models. In general, the
BVAR model is the most conservative in predicting growth while the DSGE is the
most optimistic except for investment. For instance, both the VAR(1) and DSGE
models predict higher GDP growth than the BVAR model, with the predicted rate
from the DSGE model being nearly twice of that from the BVAR model . Similarly
for the cumulative growth of real wage, the predicted rate from the DSGE model
is also about twice of those from the two VAR models. Furthermore, its predicted
path falls out of the 80% confidence band of the VAR(1) model starting from the
third quarter of 2018. As for the monetary policy, the DSGE model suggests that
the US Federal Reserve under the 2% inflation target would need to raise the
annualized federal funds rate to 2.7% by the end of 2018, while both the VAR(1)
and BVAR(4) models suggest a less aggressive move. Note that the federal funds
rates in the figure are quarterly rates.

The differences are more evident when we generate the 5-year simulation
conditional on the first year’s inflation rate hitting the 2% target. Panel (b) of
Figure 1 shows that even the very small differences in the predicted investment
growth in 2018 leads to considerable differences on the investment growth over
a five-year horizon. The discrepancies in predicted labor input and real wage
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(a) 1-year simulation while targeting the first year’s inflation at 2%

(b) 5-year simulation while targeting the first year’s inflation at 2%

Figure 1: Scenario analysis with an inflation target
The graph is based on N = 10, 000 bridge sample paths generated for each model. The red solid
line with circles represents the mean paths for the VAR(1) model, with the orange shaded areas
represent 10 to 90 percentile of the conditional distribution of the VAR(1) model. The green line
with triangles and blue line with crosses represent the mean paths for the BVAR(4) and DSGE
models, respectively. All growth rates are cumulative in both Panels (a) and (b). The labor input is
log hours worked (demeaned), and the federal funds rate is a quarterly rate.

growth among the three models are more significant with the wage growth
predicted by the DSGE model to surge above the 90 percentile of the distribution
based on the VAR(1) model.
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3.3 Dynamic scenario analysis vs forecast performance

Policy authorities usually have valuable ‘off-model’ information such as knowl-
edge about future policy target rate. Forecast conditioned on such ‘insider’ in-
formation is supposed to improve forecast accuracy if the model correctly char-
acterizes the relationship of the conditioning and other model variables. In this
subsection, we present a case study where the actual implemented federal funds
target rate is far away from the level predicted by the unconditional forecast. We
examine how a scenario analysis would have provided different insights on the
forecast of the economy in contrast with the unconditional analysis.

(a) VAR(1) model

(b) BVAR(4) model

(c) DSGE model

Figure 2: Scenario analysis vs unconditional forecast
The black solid line with asterisks represents the realized data. The red line with circle show
the mean paths from unconditional forecast, with the orange shaded area represents 10 to 90
percentile of the unconditional prediction distribution of the respective model. The blue line with
triangle represents the mean paths generated under scenario analysis.

With the bursting of the Dot-com bubble, the slowdown of the US economy
in late 2000 became apparent and intensified in the first half of 2001. To fight the
recession, the US Federal Reserve lowered the policy rate 11 times in 2001 from
higher than 6% to around 2%. It is almost certain that conventional unconditional
forecast will fail to predict such drastic and intensive rate cut due to the high
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interest rate persistence estimated from historical data. This is confirmed with
Figure 2 above, which shows all three models predicting a much gentler rate
decline to around 5.2-6% at the end of 2001. This leads to unreliable forecast
for other variables as well. By looking at the results of unconditional forecast,
we see that the DSGE model of Smets and Wouters (2007) delivers comparable
out-of-sample forecast with the two VAR models, which is consistent with the
statistical evidence provided in Smets and Wouters (2007). But overall, all three
models perform poorly with the realized paths for output, consumption and
investment barely touch the 10 percentile bound of the unconditional forecast.

In such circumstances, scenario analysis provides more valuable information
and addresses policy makers’ needs directly. It allows policy makers to (1) incor-
porate advanced information on future rates to produce more informative forecast
result and (2) experiment with different scenarios to identify the optimal strategy.
As an illustration, we perform a scenario analysis constrained by the interest rate
hitting the realized 2.1% at the end of 2001, and the result is also presented in
Figure 2. As one can expect, the predictions from scenario analysis for the VAR
and BVAR models match closer with the actual data. Surprisingly however, the
predictions for GDP and consumption from the DSGE model become even worse
after conditioning on the realized interest rate. This lends further support to our
argument that the (B)VAR and DSGE models provide considerably different pre-
dictions under the same conditioning scenario. Therefore, comparable forecasting
performance does not necessarily imply similar scenario analysis results.

3.4 Scenario-induced impact on parameter uncertainty

In real-life applications, the belief on model parameters is continuously updated
upon the arrival of new information. Therefore, the occurrence of a future scenario
should cause a revision to parameter estimates in order to stay consistent with the
contemplated scenario, a point already made by Waggoner and Zha (1999). Hence,
the conditional forecast for variables of interest, especially when the conditioning
variables take on extreme values, should also reflect the change in the parameter
distribution caused by the scenario. Our bridge sampling method has naturally
incorporated a scenario’s impact on parameter uncertainty.

To appreciate the effect of ignoring a scenario’s impact on parameter values,
we compare the scenario-impacted sampling distribution with the one derived
from the data sample for the VAR(1) and DSGE models using data up to the end
of 2000, treating it as the time point for conducting the scenario analysis. In order
to see a clearer effect on parameter uncertainty, we generate conditional paths
over the year 2001, with a more extreme artificial scenario that the federal funds
rate drops to 0% at the end of 2001. Figure 3 below demonstrates the effect on
some model parameters for the VAR(1) and DSGE models. The left panel shows a
rightward shift on the scenario-impacted sampling distribution for the standard
deviation of the innovation term associated with the interest rate equation in
the VAR(1) model, whereas the original one is the asymptotic distribution for
the OLS estimate with data up to the end of 2000. And the right panel also
suggests a scenario-induced rightward shift on the estimate for the standard error
of monetary policy shock parameter, i.e., σr, in the DSGE model of Smets and
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Wouters (2007), where the original distribution is its Bayesian posterior up to the
end of 2000.

(a) VAR(1) parameter (b) DSGE parameter

Figure 3: Effects on parameter estimates
Panel (a) shows the distribution of the standard deviation of the interest rate innovation term in the
VAR(1) model, whereas panel (b) displays the distribution of the parameter σr in the DSGE model
of Smets and Wouters (2007). The red dashed line represent respectively the OLS estimator’s
asymptotic distribution for the VAR(1) model and the posterior distribution for the DSGE model
using data up to 2000:Q4. The blue curves are the scenario-induced sampling distributions after
factoring in the conditioning future scenario for the federal funds rate to hit zero at the end of 2001.
Except for the asymptotic normal distribution for the OLS estimator, the other three distributions
are kernel density functions using their respective SMC samples.

3.5 Statistical evidence on scenario-based performance analysis

Before we discuss the scenario-based performance of the three models, we docu-
ment their unconditional forecast performance. Smets and Wouters (2007) con-
cludes that the DSGE model is superior than the other two VAR models in terms
of out-of-sample forecast by showing the root-mean-square-error (RMSE) over
the period 1990:Q1 - 2004:Q4. Note that the earlier period of data from 1966:Q1
to 1989:Q4 was used for initial estimation of the models. We re-examine this
conclusion by focusing on the out-of-sample period from 2005:Q1 to 2017:Q4
while using the 1966:Q1 - 2004:Q4 period for initial estimation of the models. The
out-of-sample performance results are presented in Appendix D. It worth men-
tioning that following Smets and Wouters (2007), forecast errors are calculated
in terms of GDP, consumption, investment and wage levels instead of quarterly
growth rate when comparing their forecast performance. We note from Table
8 that in the recent decade, the BVAR(4) model has overtaken the DSGE model
to become the best predicting model for GDP, labor input, inflation and interest
rate at most forecast horizons. The DSGE model, which used to deliver the best
prediction for all variables, now only performs better in forecasting consumption.

To further investigate which sub-period causes the deteriorated performance
of the DSGE model, we divide the forecast period into two sub-periods. According
to the NBER Business Cycle Dating Committee, the last expansion (after Global
Financial Crisis) began in June 2009. Hence we use 2009:Q2 as a natural break
point, and present the forecast performance before that in Table 9, and after
that in Table 10 in Appendix D. Hardly surprising, the prediction errors are
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much larger for the period before 2009:Q2 as it contains the Great Recession
period during which economic indicators are highly volatile and hard to predict.
It is interesting to note that the DSGE model continued its good performance
during the crisis time, but lose out to the BVAR model almost completely in the
subsequent expansion period.

In order to study the scenario-based performance of a model, we can run the
same back-testing exercise with scenario constraints. In other words, we perform
a sequence of scenario analyses with expanding data windows over some forecast
period. In Table 1, we perform back-testing conditional on the realized federal
funds rate, for the three models over the period 2005:Q1 - 2017:Q4. Again, the
performance on individual variables is measured by root mean squared error
(RMSE). We also compare this result to that of unconditional forecast given in
Table 8, with the percentage gains or losses in RMSE presented in Table 2. Note
that a higher (positive) gain corresponds to a lower RMSE for scenario analysis as
compared to unconditional forecast.

Table 1: Back testing on scenario analysis using realized federal funds rates
(2005:Q1 - 2017:Q4)

Forecast Overall
horizon GDP CONS INV Wage lHours dlP Average (SW)*

VAR(1)
1q 0.63 0.77 1.83 1.07 0.50 0.25 0.84 -6.89
2q 1.31 1.47 4.21 1.16 1.11 0.24 1.58 -2.93
4q 2.76 2.73 9.25 1.34 2.30 0.23 3.10 1.20
8q 5.50 5.00 17.93 1.87 4.18 0.23 5.78 5.59

BVAR(4)
1q 0.63 0.67 1.90 1.11 0.52 0.24 0.85 -6.93
2q 1.19 1.29 3.90 1.24 1.05 0.24 1.49 -2.78
4q 2.46 2.41 8.35 1.49 2.11 0.23 2.84 1.49
8q 4.93 4.62 16.60 2.11 3.87 0.23 5.40 6.11

DSGE
1q 0.70 0.62 1.77 1.10 0.65 0.24 0.85 -6.82
2q 1.37 1.21 3.64 1.25 1.30 0.28 1.51 -2.33
4q 2.80 2.18 7.72 1.69 2.52 0.31 2.87 1.46
8q 5.27 3.77 14.43 2.86 4.53 0.37 5.21 4.53

Notes : The data starts in 1966:Q1 and the forecast period is 2005:Q1-2017:Q4 with all models
being reestimated each quarter with an expanding data window. The overall measure is
calculated as the log determinant of the uncentered forecast error covariance matrix as in Smets
and Wouters (2007). Boldfaced numbers in red indicate best performance among the three models.

The result shows that our scenario analysis, utilizing future realized federal
funds rates, generates more accurate predictions than unconditional forecast for
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Table 2: Percentage gains(+) or losses(-) relative to unconditional forecast perfor-
mance

Forecast
horizon GDP CONS INV Wage lHours dlP Average

VAR(1)
1q -0.19 -3.61 -3.51 -0.72 -11.59 1.78 -2.96
2q 0.57 -1.23 -2.86 -2.16 -8.05 0.47 -2.51
4q 5.09 2.80 2.34 -0.61 2.72 15.77 2.86
8q 6.83 5.19 5.53 -0.74 9.00 35.89 6.10

BVAR(4)
1q 1.71 1.35 -1.87 -0.23 -6.07 0.16 -0.94
2q 3.53 1.71 0.22 -1.63 -2.79 -0.36 0.28
4q 4.43 1.32 1.82 -1.04 3.56 13.34 2.29
8q 3.04 -0.71 1.82 -1.78 5.98 28.13 2.21

DSGE
1q 2.30 -0.57 1.34 0.13 4.87 1.26 1.45
2q 4.41 -2.56 5.54 0.44 8.05 -1.89 3.83
4q 5.40 -8.75 9.91 4.58 10.18 -16.53 6.30
8q 6.97 -22.68 16.98 13.50 9.50 -43.08 9.97

Notes : Boldfaced numbers in red indicate worse performance than unconditional forecast.

most variables in the three models, especially at longer horizons. This implies
that all the models more or less reflect the true dynamics among most model
variables, at least in qualitative sense. More specifically, when conditioning on the
realized interest rate, the two VAR models provides substantially better forecast
on inflation. However, their predictions for real wage seem to be worse than in the
unconditional case. This suggests that these two models capture the comovement
between interest rate and inflation quite well while missing out on the relationship
between interest rate and wage. The DSGE model, in contrast, produces better
forecast for wage under scenario analysis but its prediction for inflation is further
away from the realized data when compared with the unconditional case. In
addition, conditioning on interest rate also leads to deteriorated forecast for
consumption, which suggests mis-specification in some aspect of the underlying
dynamics. Finally, its forecast for GDP, investment and labor input all exhibit
gains to various extents.

By comparing across the three models, we note that the improvements under
scenario analysis are more significant for the DSGE model in forecasting GDP,
investment, wage and hours worked. This suggests that the DSGE characterizes
the comovements between interest rate and these four variables better than the
other two models. Recall that in unconditional forecast, the BVAR model performs
better than the DSGE model in predicting these four variables. This may be due
to the DSGE’s unsatisfactory forecast on the interest rate, as can be seen in Table 8.
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When federal funds rate is controlled, performance of the DSGE model improves
the most and becomes the best model in predicting investment over all horizons.
Hence, good unconditional forecast performance does not necessarily imply
a superior scenario analysis result. Comparison on the wage forecast provides
further support on this argument. Despite the fact that the VAR(1) model provides
the best unconditional forecast on wage and continues to be the best performing
model on this variable under the scenario constraint (see Table 1), its prediction
performance worsens when conditioning on the realized interest rate as reflected
in Table 2. In contrast, the DSGE model gains the most on wage forecast under
scenario analysis (see Table 2), but its prediction performance is still dominated
by the other two models.

3.6 Subsample scenario analyses

To further understand the relative performance of the three models under different
economic circumstances, we conduct the same back-testing exercise with four
subsamples characterized by interest rate movement. Specifically, for each h-
period ahead scenario analyses (h = 1, 2, 4 and 8) over 2005:Q1 to 2017:Q4, we
calculate the magnitude of interest rate change at each starting time t as |∆it,h| =
|it+h − it|, and partition the forecasting sequence into four groups depending on
whether |∆it,h| falls within 25, 50 or 75 percentile of the sequence {|∆it,h|, t =
2005:Q1, · · · , 2017:Q4-h}. In other words, we are interested to know whether the
models’ performance is tied to the interest rate environment characterized by the
magnitude of interest rate move over the forecast horizon. Tables 3-6 present the
results for each subsample with Group 1 having the smallest interest rate change
and Group 4 the largest. Boldfaced numbers in red indicate the best performer
among the three models.

The results from Tables 3-6 suggest that during normal times when interest
rates are relatively stable, the BVAR(4) is the best model in predicting GDP,
investment and labor input conditional on realized interest rate, while the VAR(1)
model provides the best forecast in wage and inflation and the DSGE model in
consumption. However, as interest rates become more volatile, or in other words,
there is large rate change over the forecast horizon, the DSGE model surpass
the BVAR model for GDP and investment. For the ease of comparison, Figure 4
summarizes the results with the fill pattern in each cell indicating the best model
(with the smallest RMSE) under scenario analysis with realized interest rates for
different groups, forecast horizons, and variables of interest.
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Figure 4: Back testing in scenario analysis for interest rate groups

Table 3: Back testing on scenario analysis – Group 1 (bottom quartile in interest
rate movement)

Forecast Overall
horizon GDP CONS INV Wage lHours dlP Average (SW)*

VAR(1)
1q 0.49 0.50 1.39 1.10 0.38 0.33 0.70 -8.76
2q 0.92 0.85 2.03 1.14 0.43 0.24 0.93 -8.15
4q 1.92 1.95 5.50 1.33 1.69 0.22 2.10 -4.96
8q 5.05 4.58 7.10 1.97 2.75 0.18 3.61 -1.39

BVAR(4)
1q 0.43 0.37 1.40 1.21 0.43 0.33 0.70 -8.77
2q 0.72 0.62 1.84 1.18 0.42 0.27 0.84 -7.90
4q 1.34 1.25 3.86 1.73 1.29 0.24 1.62 -4.28
8q 4.09 3.76 4.90 2.75 2.33 0.21 3.01 -0.52

DSGE
1q 0.51 0.37 1.48 1.12 0.58 0.29 0.72 -8.10
2q 1.10 0.56 1.94 1.19 0.55 0.27 0.93 -9.19
4q 2.23 1.57 4.21 1.46 2.11 0.35 1.99 -4.04
8q 5.25 3.29 6.99 2.80 3.81 0.41 3.76 -2.83
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Table 4: Back testing on scenario analysis – Group 2 (2nd quartile in interest rate
movement)

Forecast Overall
horizon GDP CONS INV Wage lHours dlP Average (SW)*

VAR(1)
1q 0.45 0.30 0.82 1.16 0.43 0.24 0.57 -10.65
2q 0.89 1.01 2.51 1.32 1.12 0.21 1.18 -6.29
4q 2.45 2.16 3.41 1.50 1.10 0.16 1.80 -4.38
8q 4.23 3.31 7.85 1.64 2.30 0.27 3.27 -2.40

BVAR(4)
1q 0.42 0.37 0.84 1.26 0.39 0.22 0.58 -10.22
2q 0.72 0.81 1.91 1.58 0.98 0.21 1.04 -6.61
4q 2.06 1.75 3.16 1.64 0.98 0.16 1.62 -3.88
8q 3.45 2.37 6.57 1.64 1.82 0.28 2.69 -1.65

DSGE
1q 0.65 0.35 0.81 1.27 0.56 0.23 0.64 -11.15
2q 1.03 0.89 2.13 1.36 1.52 0.29 1.20 -7.46
4q 2.70 1.72 4.23 1.90 1.83 0.36 2.12 -5.42
8q 3.97 2.16 5.61 2.94 2.92 0.41 3.00 -3.90

Table 5: Back testing on scenario analysis – Group 3 (3rd quartile in interest rate
movement)

Forecast Overall
horizon GDP CONS INV Wage lHours dlP Average (SW)*

VAR(1)
1q 0.67 0.69 1.67 0.95 0.53 0.21 0.79 -9.04
2q 1.24 1.30 4.56 1.12 1.23 0.34 1.63 -3.25
4q 1.83 1.75 8.30 1.14 2.13 0.21 2.56 -5.66
8q 4.49 3.94 17.93 1.81 3.57 0.23 5.33 -3.42

BVAR(4)
1q 0.60 0.59 1.51 0.97 0.44 0.20 0.72 -9.43
2q 0.98 0.85 4.22 1.13 1.19 0.31 1.45 -4.32
4q 1.38 1.07 6.95 1.10 1.90 0.18 2.10 -5.17
8q 3.48 3.08 15.53 1.66 3.15 0.24 4.52 -1.62

DSGE
1q 0.71 0.57 1.51 0.99 0.65 0.27 0.79 -10.05
2q 1.27 0.82 3.75 1.32 1.34 0.36 1.48 -4.92
4q 1.81 0.91 5.70 1.84 2.04 0.23 2.09 -6.51
8q 4.03 2.50 12.38 3.32 3.49 0.29 4.33 -3.25

21



Table 6: Back testing on scenario analysis – Group 4 (top quartile in interest rate
movement)

Forecast Overall
horizon GDP CONS INV Wage lHours dlP Average (SW)*

VAR(1)
1q 0.83 1.23 2.79 1.05 0.62 0.18 1.12 -10.28
2q 1.91 2.26 6.23 1.04 1.38 0.16 2.16 -8.06
4q 4.18 4.26 15.21 1.35 3.54 0.32 4.81 -3.81
8q 7.57 7.24 29.21 2.03 6.65 0.24 8.82 -2.81

BVAR(4)
1q 0.91 1.08 3.05 0.99 0.75 0.17 1.16 -11.31
2q 1.90 2.17 5.95 0.98 1.34 0.17 2.08 -7.89
4q 4.03 4.19 14.35 1.39 3.41 0.31 4.61 -2.71
8q 7.51 7.51 28.18 2.20 6.43 0.20 8.67 -2.50

DSGE
1q 0.86 0.97 2.67 1.03 0.77 0.17 1.08 -11.20
2q 1.90 1.99 5.47 1.12 1.49 0.21 2.03 -6.84
4q 3.98 3.56 13.04 1.53 3.67 0.29 4.35 -3.48
8q 7.17 5.94 24.49 2.30 6.85 0.36 7.85 -3.35

4 Conclusion

In this paper, we demonstrate that dynamic scenario analysis can provide more
intuitive and informative answer to a large number of practical questions that
are naturally appealing to policymakers, comparing to conventional forecasting
exercise and structural (shock) analysis. Since it directly addresses situations
that policy advisors recognize, the results can be easily interpreted to provide
policy basis. In real life, policy authorities like central banks have ‘beyond-
model’ information such as future macro objectives. Scenario analysis allows
them to generate simulations conditional on these objectives or hypothetical
stressed conditions to provide impact evaluation or early warnings. Furthermore,
the simulated paths can be taken as a benchmark for policy makers to monitor
whether they are on track to the target.

Technically, scenario analysis requires one to simulate the dynamic model
forward while respecting restrictions imposed on some endogenous observables
at a future time. Such bridge distribution is analytically solvable only for a few
simple univariate processes such as AR(1). In macro applications, however, it
is mostly intractable due to the high dimensionality and complexity of a model.
All existing methods suffer from some kinds of inflexibility. Some are specially
designed for VAR models, some can only deal with hard conditions, and others
fail to consider parameter uncertainty. Our method provides an unified solution.
It can flexibly deal with both hard and soft scenario settings while accounting
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for parameter uncertainty. More importantly, it can be extended to nonlinear and
non-Gaussian models fairly straightforwardly.

The flexibility of our bridge-sampling method enables a scenario-based per-
formance study of different models, which we choose to be the VAR(1), BVAR(4)
and DSGE models developed in Smets and Wouters (2007). It is shown that
these three models are comparable in terms of data likelihood and forecasting
performance. But interestingly, they differ considerably under a scenario analy-
sis using a well-known inflation targeting policy. The performance comparison
between scenario analysis and the conventional forecast suggests that the two
complementary dimensions are informative in distinguishing models. The DSGE
model, which shows a relatively weak performance in conventional forecast over
2005 - 2017, has the greatest gains in performance for most variables when con-
ditioning on the realized interest rate. Therefore, scenario analysis can provide
insights into how a model performs in terms of characterizing the comovements
between the conditioning and other variables. It also provides a new angle for
model assessment in addition to historical data fit and unconditional forecasting
performance.
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A Density-Tempered SMC Bridge Sampler for Lin-
ear State-Space Model

We consider a generic linear state-space model with m-dimensional VAR(1) pro-
cess driving the state variables st and n-dimensional observed variables yt where
m ≥ n:

st =C + Bst−1 + Ωεs
t (7)

yt =µ + Mst + ε
y
t (8)

εs
t ∼Ds(0, Σs)

ε
y
t ∼Dy(0, Σy)

where C and µ are vectors of dimension m × 1 and n × 1, respectively. B de-
notes the autoregressive matrix and M the observation selection matrix. The
m-dimensional state st could be driven by a smaller number of shocks, as in most
macro DSGE models including Smets and Wouters (2007). Suppose there are l
shocks, then the matrix Ω is of dimension m× l and its entries are some transfor-
mation of known model parameters. The l shocks are collected in εs

t , and they are
i.i.d. over time, follow some distribution Ds with mean 0 and covariance matrix
Σs, but need not be Gaussian random variables. Likewise is ε

y
t , which follows

distribution Dy and has a covariance matrix denoted by Σy. Furthermore, εs
t and

ε
y
t are independent of each other, and their distributions may contain parameters

beyond means and covariance matrix if non-Gaussian. Here we only consider
the first lag term because any VAR(p) process can be straightforwardly converted
into a higher-dimensional VAR(1) model.

Suppose at time T, we are interested in conducting a scenario analysis where
the scenario imposes restrictions on the values of the first k observables τ period
ahead, denoted by y(1:k)

T+τ . The scenario condition can be written as y(1:k)
T+τ ∈ A ⊆ Rk,

where A = ×k
i=1Ai and Ai corresponds to the constraint set for y(i)

T+τ. In other
words, given the observations up to period T, i.e., y1:T, we aim to generate
bridge paths, Y = (yT+1, yT+2, · · · , yT+τ), representing the conditional distribu-
tion p(Y |y1:T, y(1:k)

T+τ ∈ A). Our method adopts the bridge-sampling technique
proposed in Duan and Zhang (2016), adds parameter uncertainty and adapts it to
the state-space setting.

By assuming that all parameters are subject to sampling errors, we need to
consider an augmented space (Y , θ), where θ is the vector containing all model
parameters. To adapt to the state-space setting, we further extend the augmented
space to include sT:(T+τ) because at each t, we need both observables yt and
unobservables st to provide sufficient information to roll the model forward.
However, after getting sT, by equation (7), st and εs,t carry the same information
for t running from T + 1 to T + τ. Hence one can express the augmented system in
either sT:(T+τ) or (Es, sT), where Es = εs

(T+1):(T+τ), but it turns out that the latter is
more convenient to work with in dealing with degeneracy due to l < m in models
such as Smets and Wouters (2007) to be elaborated later in subsection A.5. So, the
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complete augmented system is considered to be(Y , Es, sT, θ). Mathematically, we
define the logarithm of the target bridge density as follows:

lnLTBridge(Y , Es, sT, θ)

= ln p(Y , Es, sT, θ|y1:T, y(1:k)
T+τ ∈ A)

= ln p(θ|y1:T) + ln fD(sT|θ, y1:T) + ln fD(Y , Es|sT, θ, y1:T)

− ln fD(y
(1:k)
T+τ ∈ A|y1:T)

= ln p(θ|y1:T) + ln fD(sT|θ, y1:T) +
T+τ

∑
t=T+1

ln fD(yt, εs
t |st−1, θ)

− ln fD(y
(1:k)
T+τ ∈ A|y1:T) (9)

where p(θ|y1:T) is the parameter density given observations up to time T, the
filtering density for sT is ln fD(sT|θ, y1:T), and ln fD(y

(1:k)
T+τ ∈ A|y1:T) is the proba-

bility of the scenario conditional on y1:T. fD indicates that the density is evaluated
with respect to the target state-space model given by equations (7)-(8). Note that
if p(θ|y1:T) is derived from a frequentist approach, it is typically an asymptotic
distribution of a known form. Under the Bayesian analysis using MCMC or SMC,
p(θ|y1:T) is represented by a sample. This is actually an important factor to our
algorithm design which has broader applications in mind. The method proposed
here does not need to know its analytical form of p(θ|y1:T).

A.1 Initialization

The target bridge density function in most cases lacks analytical formula and
hence cannot be sampled directly. Following Duan and Zhang (2016), we apply
the idea of sequential importance sampling, and start with a sample from some
easy-to-draw bridge distribution while knowing it is incorrect. Below we design
an efficient generator for the initialization.

Under the augmented space, we need to generate initialization for Y , Es, sT
and θ. Sampling θ and sT is straightforward. Either p(θ|y1:T) is an asymptotic
distribution of a known form which we can sample accordingly or we will have
a sample directly from the Bayesian estimation step. If we are not confident
about the quality of the sample from the Bayesian estimation step in representing
p(θ|y1:T), or the scenario imposed is so extreme that we feel the sample does
not provide an adequate empirical support to cover the parameter distribution
after factoring in the scenario condition, we can choose to re-initialize θ by a
Gaussian density approximating p(θ|y1:T), with an enlarged variance if necessary.
We denote this Gaussian density by I(θ), and it is used as the generator for θ in
our subsequent illustration unless specified otherwise. When latency is involved,
sT can be sampled according to the filtering distribution fD(sT|θ, y1:T) which is
also available from the Bayesian or frequentist estimation step.

For initialization of Y , we proceed in two steps. We first partition the obser-
vation vector into two groups: yt = (y(1:k)

t , y(k+1:n)
t ) where the conditioning vari-

ables are gathered in the first k elements. We further denote the bridge paths for
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conditioning variables by Y1:k = y(1:k)
T+1:T+τ and those of companion observations

by Yk+1:n = y(k+1:n)
T+1:T+τ. In the first step, we sample bridge paths for conditioning

variables Y1:k, one variable at a time based on the estimated univariate AR(1)
process. In the second step, we generate bridge paths for the other companion
variables conditional on Y1:k via a simple decomposition. To be more specific, we
assume each of the conditioning variables yi,t, where i = 1 : k, follows a Gaussian
AR(1) process, knowing that they may not be true but can be compensated with an
importance weight in sampling later. That is, we estimate the following assumed
AR(1) process using the observed data.

yi,t =µi + ρiyi,t−1 + εit (10)

εit|Ft−1 ∼N(0, σ2
i ).

where µi is a constant scalar and ρi is the autoregressive coefficient. Innovation
εit conditional on information set Ft−1 is assumed Gaussian with mean 0 and
variance σ2

i .

Before sampling the bridge paths for yi,t, one needs to fix the value of its
endpoint yi,(T+τ). The sampling of the endpoint will depend on the type of
condition imposed on yi,(T+τ), i.e., the structure of Ai. If yi,(T+τ) is constrained
by a hard condition, i.e. Ai is a singleton, yi,(T+τ) will simply equal the only
permissible endpoint. On the other hand, if policy makers want to allow for
some uncertainty on the conditioning information so that the scenario requires
the endpoint to fall within some range, we will first draw yi,(T+τ) with some
distribution gi(yi,(T+τ)|yi,T, Ai) based on the estimated AR(1) process, which we
will discuss in a later subsection.

Once yi,(T+τ) is drawn, we can generate bridge paths according to the explicit
representation of the Gaussian AR(1) bridge conditional on a fixed endpoint:

yi,t =αit(yi,t−1) + βityi,(T+τ) + uit

αit(yi,t−1) =µi + ρiyi,t−1 − βit

(
1− ρ

(T+τ−t+1)
i

1− ρi
µi + ρ

(T+τ−t+1)
i yi,t−1

)

βit =ρ
(T+τ−t)
i

1− ρ2
i

1− ρ
2(T+τ−t+1)
i

(11)

ζ2
it =

1− ρ2
i − β2

it(1− ρ
2(T+τ−t+1)
i )

1− ρ2
i

σ2
i

uit ∼N(0, ζ2
it) i.i.d.

where µi, ρi, and σi are estimated using equation (10); αit(yi,t−1) and βit come
from the standard Gaussian bridge results.

With the bridge for conditioning variables in place, we can then generate other
variables in the state-space model by utilizing the following equation deduced
from equations (7)-(8) and assuming that εs

t and ε
y
t are Gaussian for the generator.

yt =µ∗ + M∗st−1 + ε
y∗
t (12)

ε
y∗
t ∼N(0, Σy∗)
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where µ∗ = µ+ MC, M∗ = MB, ε
y∗
t = MΩεs

t + ε
y
t , and Σy∗ = MΩΣsΩ′M ′+Σy.

Express with sub-blocks: µ∗ =

[
µ∗k

µ∗k−

]
, M∗ =

[
M∗k

M∗k−

]
, and Σy∗ =

[
Σ

y∗
11 Σ

y∗
12

Σ
y∗
21 Σ

y∗
22

]
.

Then one can easily derive

E(y(k+1:n)
t |y(1:k)

t , st−1, θ) =µ∗k− + M∗k−st−1 + Σ
y∗
21

(
Σ

y∗
11

)−1
(y(1:k)

t − µ∗k −M∗k st−1)
(13)

Var(y(k+1:n)
t |y(1:k)

t , st−1, θ) =Σ
y∗
22 − Σ

y∗
21

(
Σ

y∗
11

)−1
Σ

y∗
12 . (14)

and use these two sufficient statistics to generate paths for y(k+1:n)
t , the other

observable variables.

Of course, we also need to generate the state variables, st, conditional on yt,
because they form part of the information set for advancing the system to the next
time point. For this, we first generate εs

t according to the following distribution:

E(εs
t |yt, st−1, θ) =E(εs

t |ε
y∗
t , θ)

=ΣsΩ′M ′ (Σy∗)−1 ε
y∗
t

=ΣsΩ′M ′ (Σy∗)−1 (yt − µ∗ −M∗st−1) (15)

Var(εs
t |yt, st−1, θ) =Var(εs

t |ε
y∗
t , θ)

=Σs − ΣsΩ′M ′ (Σy∗)−1 MΩ (Σs) . (16)

This gives our initialization for εs
t and also completes our initialization for the

entire augmented system. After drawing εs
t , st can be updated accordingly using

the transition equation (7).

If the target model is VAR(1) instead of the state-space model, the method
described above can be greatly simplified, because latency is absent from the
model. Specifically, we no longer need the filtering distribution to sample the
initial latent variables. The conditioning variable st−1 appearing in many places
should also be replaced by yt−1, and equation (12) is used instead. Moreover,
equations (15)-(16) used for sampling εs

t are no longer required.

The overall density of this initialization bridge sampler is the product of (1)
the initialization density for the model parameter, i.e., I(θ), which is by choice
a Gaussian density approximating p(θ|y1:T), (2) the filtering distribution for
sT based on the state-space model in equations (7)-(8), i.e., fD(sT|θ, y1:T), (3)
the density of the AR(1) bridge for each of the k conditioning variables, which
is Gaussian by design, (4) the conditional density of the bridge paths for the
remaining observables which is again Gaussian by design, and finally (5) the
density of εs

t conditional on yt.

Since each conditioning variable yi,t, where i = 1 : k, is assumed to follow the
Gaussian bridge process defined in equation (11), its density only depends on the
estimated coefficients for their respective AR(1) processes and yi,T, which can be
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written as:

lnLIBridge(Y1:k|yT)

=
k

∑
i=1

[
T+τ−1

∑
t=T+1

ln f (yi,t|yi,t−1, yi,T+τ) + ln gi(yi,T+τ|yi,T, Ai)

]
(17)

where

ln f (yi,t|yi,t−1, yi,T+τ) = −
1
2

ln(2πζ2
it)−

(yi,t − αit(yi,t−1)− βityi,T+τ)
2

2ζ2
it

. (18)

Next, the generator for Yk+1:n and Es makes use of a decomposed form of
equation (12), which depends on the initial state sT, the model parameter θ and
the bridge path for conditioning variables Y1:k. Hence, the logarithm of their joint
density is:

lnLIBridge(Yk+1:n, Es|Y1:k, sT, θ)

=
T+τ

∑
t=T+1

[
ln fG(y

(k+1:n)
t |y(1:k)

t , st−1, θ) + ln fG(ε
s
t |yt, st−1, θ)

]
(19)

where fG(y
(k+1:n)
t |y(1:k)

t , st−1, θ) is a Gaussian distribution with mean and variance
given in equations (13) and (14). Similarly, fG(ε

s
t |yt, st−1, θ) is Gaussian with mean

and variance defined in equations (15) and (16). Notice that in the degenerate case
such as the DSGE model of Smets and Wouters (2007), this density will become
a Dirac delta function, but does not present a numerical difficulty to our bridge
sampling method, which will become clear later.

In summary, the log-density of our initialization sampler can be written as:

lnLIBridge(Y , Es, sT, θ)

= ln I(θ) + ln fD(sT|θ, y1:T) + lnLIBridge(Y1:k|yT)

+ lnLIBridge(Yk+1:n, Es|Y1:k, sT, θ). (20)

A.2 Importance weight and density tempering

Recall that our target process is a state-space model specified in equations (7)-(8),
and the target bridge density is defined in equation (9). Following the theory
of importance sampling, the correct importance weight assigned to the sample
(Y , Es, sT, θ) equals:

LTBridge(Y , Es, sT, θ)

LIBridge(Y , Es, sT, θ)

∝
p(θ|y1:T)∏T+τ

t=T+1 fD(yt, εs
t |st−1, θ)

I(θ)LIBridge(Y1:k|yT)LIBridge(Yk+1:n, Es|Y1:k, sT, θ)
. (21)

The proportional sign holds because the fD(y
(1:k)
T+τ ∈ A|y1:T) term in our target

density is the probability of landing in the target set A averaged over all values of
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the latent variables using the filtering distribution at time T and over all parameter
values using p(θ). It remains a constant for all samples in the augmented space
and hence irrelevant. Furthermore, the filtering density fD(sT|θ, y1:T) drops out
of the importance weight formula completely through cancellation, therefore we
do not need to know its analytical form.

Since the model from which we generate our initialization sample differs from
the target state-space model, the importance weights across sample points are
expected to be quite uneven. If we directly resample according to these weights,
only a few or a small fraction of the original sample points will be retained,
resulting in severe empirical support shrinkage and sample impoverishment.
Hence, we must temper the importance weights sequentially to close the gap
between the initialization generator and the target model. Following Duan and
Zhang (2016), we smooth the transition by artificially constructing a series of
intermediate target distributions:

fδi(Y , Es, sT, θ)

∝LIBridge(Y , Es, sT, θ)×
(
LTBridge(Y , Es, sT, θ)

LIBridge(Y , Es, sT, θ)

)δi

(22)

0 = δ0 < δ1 < δ2 < · · · = 1

By doing this, we break the transition task into a number of smaller movements.
Each time when we proceed from δi to δi+1, we are one step closer to our target
bridge distribution. In this sub-movement, fδi(Y , Es, sT, θ) can be viewed as an
initialization bridge distribution, and fδi+1(Y , Es, sT, θ) our target distribution.
Moving to the new target hence can be implemented by reweighting the paths
with the following incremental importance weights:

W(δi, δi+1, Y , Es, sT, θ) =
fδi+1(Y , Es, sT, θ)

fδi(Y , Es, sT, θ)

∝
LIBridge(Y , Es, sT, θ)

(LTBridge(Y ,Es,sT ,θ)
LIBridge(Y ,Es,sT ,θ)

)δi+1

LIBridge(Y , Es, sT, θ)
(LTBridge(Y ,Es,sT ,θ)
LIBridge(Y ,Es,sT ,θ)

)δi

=

(
LTBridge(Y , Es, sT, θ)

LIBridge(Y , Es, sT, θ)

)δi+1−δi

∝

(
p(θ|y1:T)∏T+τ

t=T+1 fD(yt, εs
t |st−1, θ)

I(θ)LIBridge(Y1:k|yT)LIBridge(Yk+1:n, Es|Y1:k, sT, θ)

)δi+1−δi

(23)

and resampling accordingly.

The degree of sample impoverishment is directly linked to the unevenness of
importance weights, hence following the convention in the SMC literature, we
use the effective sample size (ESS) to monitor the diversity of paths. Denote our
intended sample size by N, ESS as a percentage of N is calculated as:

ESS/N =
1

N ∑Nd
p=1 w2

p

(24)
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where p is the index for particles, Nd is the number of distinct points and wp are the
importance weights converted into probabilities. If there are multiple duplicates of
a particle in the sample, wp is the sum of probabilities of all duplicates. To serve the
purpose of maintaining good sample diversity, the series {δ1, δ2, . . . } is adaptively
chosen such that the ESS stays above a certain level. Unless otherwise stated,
we set the threshold at 50% of the total sample size. To be more specific, with
a sample representing fδi(Y , Es, sT, θ), we calculate the incremental importance
weights W and ESS/N according to equations (23) and (24) for various values
of δi+1 ∈ (δi, 1]. We pick the maximum δi+1 that satisfies ESS/N ≥ 0.5, and that
determines our next target distribution. By resampling and reassigning equal
weights to the simulated paths, we advance bridge paths to fδi+1 , and can proceed
to choose the next target in the sequence.

A.3 Support boosting

It has been elaborated in Duan and Zhang (2016) that periodically boosting the
empirical support is essential for the bridge-sampling scheme to succeed, and the
Metropolis-Hastings (MH) move can help accomplish this task. The MH move
starts with a newly proposed particle (Y∗, E∗s , s∗T, θ∗) in the augmented space,
which is used to replace the original point (Y , Es, sT, θ) at some acceptance rate
determined by the quality of the proposal.

One natural proposal for the MH move is again the initialization sampler.
Here we make minor modifications to make it adaptive and more efficient. Recall
that our initialization for model parameters is I(θ) which is a Gaussian density
approximating p(θ|y1:T). In the MH move, we consider a mixed proposal for
θ∗ denoted by h(θ∗|θ), which is a 50-50 mixture of independent and symmetric
random walk proposals, and both are Gaussian. The independent proposal is
intended to approximate the available SMC sample of θ at the stage, i.e., using
the sample’s mean vector and covariance matrix, whereas the symmetric random
walk proposal uses a scaled-down covariance matrix (20% of the sample standard
deviations) to provide some local variation. s∗T is again sampled from the filtering
distribution fD(s∗t |θ∗, y1:T) based on the state-space model in equations (7)-(8),
but at a different parameter value θ∗.

We use the same generating model given in equations (10) - (16) as the proposal
for Y∗ and E∗s conditional on s∗T and θ∗. The only difference from the initialization
is that here we make use of a nice feature in Duan and Zhang (2016), which
is to replace random segments of a bridge path instead of the entire path. For
details on how to generate random starting and ending times with (T + 1) ≤
ts ≤ te ≤ (T + τ − 1), readers are referred to Duan and Zhang (2016). It is worth
mentioning that there is a Bernoulli random variable Z with p(Z = 1) = 0.5
which indicates whether the endpoints y(1:k)

T+τ is resampled. When Z = 1, te is
always set equal to T + τ − 1 and when Z = 0, we set ts equal to T + 1 with 50%
probability. With Z, ts and te in place, we first generate the defiined segment of
bridge paths for the k conditioning variables, again one at a time based on their
respective estimated AR(1) processes in equation (10). Note that the new paths for
conditioning variables Y∗1:k are different from Y1:k only over the segment defined

30



by [ts, te] which is tied to Z. Hence, its log-density given current path Y , while
conditioning on s∗T, θ∗, Z, ts and te is:

lnLMH(Y∗1:k|Y , s∗T, θ∗, Z, ts, te)

= lnLMH(Y∗1:k|Y , Z, ts, te)

=


∑k

i=1

[
∑te

t=ts
ln f (y∗i,t|y∗i,t−1, yi,te+1, te)

]
i f Z = 0

∑k
i=1

[
∑T+τ−1

t=ts
ln f (y∗i,t|y∗i,t−1, y∗i,T+τ) + ln gi(y∗i,T+τ|yi,ts−1, Ai)

]
i f Z = 1

where gi(y∗i,T+τ|yi,ts−1, Ai) is the same endpoint sampler as in the initialization
which will be described in the next subsection, and

ln f (y∗i,t|y∗i,t−1, yi,te+1, te) = −
1
2

ln
(

2πζ2
it(te)

)
−

(
y∗i,t − αit(y∗i,t−1, te)− βit(te)yi,te+1

)2

2ζ2
it(te)

where

αit(y∗i,t−1, te) =µi + ρiy∗i,t−1 − βit(te)

(
1− ρ

(te−t+2)
i

1− ρi
µi + ρ

(te−t+2)
i y∗i,t−1

)

βit(te) =ρ
(te−t+1)
i

1− ρ2
i

1− ρ
2(te−t+2)
i

ζ2
it(te) =

1− ρ2
i − βit(te)2

(
1− ρ

2(te−t+2)
i

)
1− ρ2

i
σ2

i .

Next, we use again equations (12) - (16) to sample Y∗k+1:n and E∗s conditional on
Y∗1:k, s∗T and θ∗. It is worth noting that Y∗k+1:n and E∗s will differ from Yk+1:n and
Es at all time points from T + 1 to T + τ even though Y∗1:k and Y1:k are identical

before ts and after te. This is because the distribution of y∗(k+1:n)
t depends on the

previous state s∗t−1, and s∗t starts to differ from st right from the beginning at time
T. Therefore, the logarithm of the joint density of Y∗k+1:n and E∗s is:

lnLMH(Y∗k+1:n, E∗s |Y∗1:k, s∗T, θ∗)

=
T+τ

∑
t=T+1

[
ln fG(y

∗(k+1:n)
t |y∗(1:k)

t , s∗t−1, θ∗) + ln fG(ε
s∗
t |y∗t , s∗t−1, θ∗)

]
.

Notice that this is actually the same as lnLIBridge(Y∗k+1:n, E∗s |Y∗1:k, s∗T, θ∗).

The overall density of the new particle (Y∗, E∗s , s∗T, θ∗) under the MH proposal
is then given by:

LMH(Y∗, E∗s , s∗T, θ∗|Y , Es, sT, θ)

=h(θ∗|θ) fD(s∗T|θ∗, y1:T)LMH(Y∗1:k|Y , Z, ts, te)LIBridge(Y∗k+1:n, E∗s |Y∗1:k, s∗T, θ∗)

Suppose we are at the intermediate target fδi , given a particle (Y , Es, sT, θ),
the replacement proposal (Y∗, E∗s , s∗T, θ∗) should be accepted at the probability
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calculated as follows:

a{(Y , Es, sT, θ)→ (Y∗, E∗s , s∗T, θ∗)}

= min
(

1,
fδi
(Y∗,E∗s ,s∗T ,θ∗)

fδi
(Y ,Es,sT ,θ)

LMH(Y ,Es,sT ,θ|Y∗,E∗s ,s∗T ,θ∗)
LMH(Y∗,E∗s ,s∗T ,θ∗|Y ,Es,sT ,θ)

)
(25)

Note that LMH(Y∗, E∗s , s∗T, θ∗|Y , Es, sT, θ) is similar to the initialization sampler,
LIBridge(Y∗, E∗s , s∗T, θ∗) in equation (20). The differences are (1) h(θ∗|θ) takes the
place of I(θ∗), and (2) LMH(Y∗1:k|Y , Z, ts, te) takes the place of LIBridge(Y∗1:k|y1:T).
Thus, many terms simply drop out of the expression for the acceptance probability
due to cancellation. That is,

a{(Y , Es, sT, θ)→ (Y∗, E∗s , s∗T, θ∗)}

=min

1,

I(θ∗)LIBridge(Y∗1:k|yT)

h(θ∗|θ)LMH(Y∗1:k|Y ,Z,ts,te)

(LTBridge(Y∗,E∗s ,s∗T ,θ∗)
LIBridge(Y∗,E∗s ,s∗T ,θ∗)

)δi

I(θ)LIBridge(Y1:k|yT)

h(θ|θ∗)LMH(Y1:k|Y∗,Z,ts,te)

(LTBridge(Y ,Es,sT ,θ)
LIBridge(Y ,Es,sT ,θ)

)δi



=min

1,

I(θ∗)LIBridge(Y∗1:k|yT)

h(θ∗|θ)LMH(Y∗1:k|Y ,Z,ts,te)

(
p(θ∗|y1:T)∏T+τ

t=T+1 fD(y∗t ,ε∗s,t|s∗t−1,θ∗)
I(θ∗)LIBridge(Y∗1:k|yT)LIBridge(Y∗k+1:n,E∗s |Y∗1:k,s∗T ,θ∗)

)δi

I(θ)LIBridge(Y1:k|yT)

h(θ|θ∗)LMH(Y1:k|Y∗,Z,ts,te)

(
p(θ|y1:T)∏T+τ

t=T+1 fD(yt,εs
t |st−1,θ)

I(θ)LIBridge(Y1:k|yT)LIBridge(Yk+1:n,Es|Y1:k,sT ,θ)

)δi

 .

(26)

The lack of an analytical form for p(θ|y1:T) can be dealt with in two ways.
First, choose both h(θ∗|θ) and I(θ∗) to be the same as p(θ∗|y1:T) to completely
cancel it out. Alternatively, numerically evaluate the posterior distribution by its
definition:

p(θ|y1:T) ∝ Prior(θ)L(y1, y2, · · · , yT|θ).
Naturally, the first way is much simpler and entails lower computing costs, but
the second approach may be necessary when the contemplated scenario is rather
extreme. When p(θ|y1:T) is represented by a sample, repeatedly generating θ∗

using that sample will constrain the particle set of θ∗ from properly adapting to
the paths dictated by the future scenario if it is rather extreme. For example, if
we consider a scenario on a conditioning variable that is six standard deviations
away from its mean implied by p(θ|y1:T), the scenario will naturally push the
parameter distribution away from p(θ|y1:T) so as to be more compatible with the
scenario. Hence the added costs of evaluating the data likelihood repeatedly may
become necessary when the contemplated scenario is extreme to the point that
sampling from p(θ|y1:T) can no longer effectively boost the support.

A.4 Sample endpoints that fall in the target set

Recall that before we generate bridge paths for conditioning variable yi,t, i ∈ [1 : k],
we need to fix its endpoint yi,(T+τ). For scenarios that require the endpoint to fall
within a set, we will first sample yi,(T+τ) according to some distribution denoted
by gi. If there is no reason for choosing a particular gi, the truncated normal
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distribution based on the estimated AR(1) process will be a natural candidate
when Ai is an interval. This density function only depends on yi,T and Ai, and
we denote it by gi(yi,(T+τ)|yi,T, Ai).

As an illustration, suppose the scenario requires yi,(T+τ) ∈ Ai = [yl
i , yu

i ]. By
assuming yi,t evolves according to equation (10), we sample yi,(T+τ) from a normal
distribution with the following mean and variance:

µi,T(τ) = E(yi,(T+τ)|yi,T) =ρτ
i yi,T + µi

1− ρτ
i

1− ρi
(27)

σ2
i,T(τ) = Var(yi,(T+τ)|yi,T) =

1− ρ2τ
i

1− ρ2
i

σ2
i (28)

while restricting to the interval [yl
i , yu

i ].

The sampled endpoint yi,(T+τ) based on truncated normality has the following
density function:

ln gi(yi,(T+τ)|yT, Ai) = ln φ (ξi,T(τ))− ln σi,T(τ)− ln Zi,T(τ) (29)

where

ξi,T(τ) =
yi,(T+τ) − µi,T(τ)

σi,T(τ)

Zi,T(τ) =Φ (bi,T(τ))−Φ (ai,T(τ))

ai,T(τ) =
yu

i − µi,T(τ)

σi,T(τ)

bi,T(τ) =
yl

i − µi,T(τ)

σi,T(τ)
,

φ(·) is the density function of standard normal distribution and Φ(·) is the cor-
responding cumulative distribution function. Note that Zi,T(τ) need not be
evaluated because it becomes an irrelevant constant as far as the importance
weight is concerned.

A.5 Bridge-sampling degenerate state-space models

All linearized DSGE models can be expressed in a state-space form as in equations
(7)-(8). Here we discuss the DSGE model of Smets and Wouters (2007), and show
how our algorithm can deal with degeneracy in such a model. Notice that this
model contains no measurement error and no constant term in the transition
equation. Hence its state-space form looks as follows:

st =Bst−1 + Ωεs
t

yt =µ + Mst

εs
t ∼N(0, Σs)

where the vector of latent state variables, st, is 50-dimensional, the vector of
observable variables, yt, is seven-dimensional, εs

t contains all Gaussian shock
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variables and is also seven-dimensional with covariance matrix Σs. Ω is a known
50× 7 matrix containing the transformation information.

There are two types of degeneracy in the Smets and Wouters (2007) model.
The first comes from dimension mismatch between the state variables and shocks,
which is quite common in the state-space formulations converted from macro
DSGE models. More precisely, the 50-dimensional state st is driven by a lower
dimensional shock, i.e., seven-dimensional εs

t . Given st−1, the variance of st
equals ΩΣsΩ′, which has a maximum rank of seven and hence is always singular.
This makes it difficult to evaluate the density of st. And since εs

t and st carry
essentially the same information, we can structure the augmented space in terms
of εs

t instead of st.

The second type of degeneracy is associated with zero measurement error.
In equation (12) for the initialization sampler, we have ε

y
t = 0 , ε

y∗
t = MΩεs

t ,
where MΩ is a 7× 7 matrix and generically invertible. Thus, fG(ε

s
t |yt, st−1, θ)

becomes a Dirac delta function with probability mass concentrated at a single
point εs

t = (MΩ)−1(yt − µ∗ − M∗st−1). Denote in general the Dirac delta by
δ{x=x0}(x) which is 0 everywhere except at x0 where its value equals infinity
but the whole function can be integrated to 1. In short, fG(ε

s
t |yt, st−1, θ) =

δ{εs
t=(MΩ)−1(yt−µ∗−M∗st−1)}(ε

s
t ) for such a degenerate case. For computing the

importance weight, this Dirac delta function will be cancelled out by a same term
in the target bridge density. But it is important to remember that this Dirac delta
function depends on parameter value and bridge path so that cancellation can
only happen if the target bridge’s density shares the same Dirac delta function as
the generating bridge.

The overall initialization density is then written as:

lnLIBridge(Y , Es, sT, θ)

= ln I(θ) + ln fD(sT|θ, y1:T) + lnLIBridge(Y1:k|yT) + lnLIBridge(Yk+1:n|Y1:k, sT, θ)

+
T+τ

∑
t=T+1

ln δ{εs
t=(MΩ)−1(yt−µ∗−M∗st−1)}(ε

s
t ) (30)

Note that the last term on the right-hand side of the above equation need not be
evaluated due to a cancellation later, and for the coding purpose it can be set to 0.

Likewise for the target model,

ln fD(yt, εs
t |st−1, θ) = ln fD(ε

s
t |st−1, θ) + ln fD(yt|εs

t , st−1, θ)

and fD(yt|εs
t , st−1, θ) is again a Dirac delta function but in terms of yt. By equation

(12) and ε
y
t = 0, we have

yt = µ + MC + MBst−1 + MΩεs
t .

Factoring in the Jacobian of the transformation gives rise to

fD(yt|εs
t , st−1, θ) =

fD(ε
s
t |yt, st−1, θ)

det(MΩ)

=
δ{εs

t=(MΩ)−1(yt−µ∗−M∗st−1)}(ε
s
t )

det(MΩ)
.
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Hence, the log-density for the target bridge is

lnLTBridge(Y , Es, sT, θ)

∝ ln p(θ|y1:T) + ln fD(sT|θ, y1:T) +
T+τ

∑
t=T+1

ln fD(ε
s
t |st−1, θ)− τ ln det(MΩ)

+
T+τ

∑
t=T+1

ln δ{εs
t=(MΩ)−1(yt−µ∗−M∗st−1)}(ε

s
t ) (31)

Note that the last term on the right-hand side of equation (31) is the same Dirac
delta function as that in equation (30), again an irrelevant constant that can be set
to 0 for the coding purpose.

After correctly evaluating the proposal density and target bridge density, the
subsequent reweighting, resampling and boosting step follows exactly the same
as described in A.2 - A.4.
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B DSGE estimation results

Table 7: DSGE Posterior Distribution

Structural Parameters
1966:1-2004:4 1966:1-2017:4

Mean SD Mean SD
ϕ 5.74 0.96 4.65 0.86
σc 1.38 0.11 1.28 0.15
h 0.71 0.04 0.58 0.05

ξw 0.70 0.06 0.76 0.04
σl 1.83 0.55 1.76 0.48
ξp 0.66 0.05 0.76 0.04
ιw 0.58 0.12 0.60 0.12
ιp 0.24 0.08 0.29 0.09
ψ 0.54 0.11 0.79 0.07
Φ 1.60 0.08 1.51 0.07
rπ 2.04 0.17 2.03 0.15
ρ 0.81 0.02 0.82 0.02
ry 0.08 0.02 0.09 0.02

r∆y 0.22 0.03 0.24 0.02
π̄ 0.78 0.10 0.67 0.09

β−1 − 1 0.16 0.05 0.16 0.05
l̄ 0.53 1.07 0.63 1.18
γ̄ 0.43 0.02 0.29 0.04
α 0.19 0.02 0.18 0.02

Shock Processes
1966:1 - 2004:4 1966:1 - 2017:4
Mean SD Mean SD

σa 0.45 0.03 0.46 0.03
σb 0.23 0.02 0.11 0.01
σg 0.53 0.03 0.48 0.02
σi 0.45 0.05 0.36 0.03
σr 0.24 0.02 0.22 0.01
σp 0.14 0.02 0.14 0.01
σw 0.24 0.02 0.38 0.02
ρa 0.95 0.01 0.99 0.004
ρb 0.22 0.08 0.79 0.04
ρg 0.97 0.01 0.97 0.01
ρi 0.71 0.05 0.78 0.06
ρr 0.15 0.06 0.16 0.05
ρp 0.89 0.05 0.87 0.05
ρw 0.96 0.01 0.98 0.01
µp 0.69 0.09 0.75 0.07
µw 0.84 0.05 0.96 0.01
ρga 0.52 0.09 0.50 0.07
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C Quality of the bridge-sampler

Figure 5: QQ plot for the VAR(1) model

Figure 6: QQ plot for the DSGE model
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D Out-of-sample forecast performance

Table 8: Out-of-Sample Forecast (2005:Q1 - 2017:Q4)

Forecast Fed Ave- Overall
horizon GDP CONS INV Wage lHours dlP funds rage (SW)*

VAR(1)
1q 0.63 0.74 1.77 1.06 0.45 0.25 0.16 0.72 -11.08
2q 1.32 1.45 4.09 1.14 1.03 0.24 0.24 1.36 -6.32
4q 2.91 2.80 9.47 1.33 2.36 0.28 0.35 2.79 -1.29
8q 5.90 5.27 18.98 1.86 4.59 0.36 0.61 5.37 3.13

BVAR(4)
1q 0.64 0.68 1.87 1.11 0.49 0.24 0.11 0.74 -11.73
2q 1.24 1.31 3.91 1.22 1.02 0.24 0.21 1.31 -6.42
4q 2.57 2.45 8.51 1.47 2.19 0.27 0.33 2.54 -1.15
8q 5.08 4.59 16.91 2.08 4.12 0.32 0.52 4.80 3.67

DSGE
1q 0.71 0.62 1.79 1.11 0.68 0.25 0.11 0.75 -11.47
2q 1.44 1.18 3.85 1.26 1.41 0.28 0.22 1.38 -6.37
4q 2.96 2.00 8.57 1.77 2.81 0.27 0.42 2.69 -1.08
8q 5.66 3.08 17.39 3.31 5.00 0.26 0.72 5.06 2.90

Table 9: Out-of-Sample Forecast (2005:Q1 - 2009:Q2)

Forecast Fed Ave- Overall
horizon GDP CONS INV Wage lHours dlP funds rage (SW)*

VAR(1)
1q 0.81 1.12 2.56 1.23 0.58 0.29 0.25 1.10 -11.32
2q 1.85 2.22 6.57 1.13 1.52 0.28 0.30 2.26 -7.84
4q 3.73 3.78 13.38 1.25 3.04 0.34 0.42 4.25 -6.54
8q 5.65 5.20 21.90 1.92 4.07 0.50 0.79 6.54 -7.75

BVAR(4)
1q 0.90 1.04 2.85 1.27 0.72 0.29 0.16 1.18 -11.22
2q 1.85 2.06 6.44 1.11 1.58 0.28 0.25 2.22 -7.50
4q 3.58 3.65 12.39 1.24 2.90 0.28 0.41 4.01 -5.89
8q 5.35 5.20 20.27 2.06 3.70 0.40 0.71 6.16 -7.67

DSGE
1q 0.83 0.91 2.44 1.21 0.85 0.28 0.14 1.09 -12.32
2q 1.74 1.77 5.76 1.16 1.77 0.32 0.22 2.09 -7.70
4q 3.17 2.70 11.10 1.43 2.95 0.28 0.44 3.60 -6.26
8q 4.66 2.96 17.97 2.50 3.91 0.35 0.66 5.39 -8.55
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Table 10: Out-of-Sample Forecast (2009:Q3 - 2017:Q4)

Forecast Fed Ave- Overall
horizon GDP CONS INV Wage lHours dlP funds rage (SW)*

VAR(1)
1q 0.53 0.45 1.21 0.97 0.34 0.23 0.06 0.62 -15.43
2q 1.00 0.91 2.09 0.97 0.57 0.23 0.10 0.96 -11.43
4q 2.23 1.90 4.33 1.33 1.11 0.21 0.20 1.85 -7.40
8q 4.85 4.02 8.50 1.69 2.45 0.27 0.46 3.63 -5.52

BVAR(4)
1q 0.46 0.35 1.08 1.03 0.31 0.21 0.05 0.57 -16.04
2q 0.80 0.68 1.76 1.01 0.53 0.22 0.10 0.83 -11.76
4q 1.74 1.42 3.47 1.40 0.88 0.23 0.16 1.52 -7.43
8q 3.75 3.02 6.21 1.73 1.78 0.29 0.32 2.80 -4.83

DSGE
1q 0.66 0.40 1.37 1.06 0.53 0.23 0.10 0.71 -16.08
2q 1.30 0.79 2.55 1.16 1.03 0.25 0.21 1.18 -12.31
4q 2.80 1.47 5.64 1.96 2.05 0.23 0.43 2.36 -8.84
8q 5.51 2.42 11.61 3.78 3.81 0.20 0.75 4.56 -8.37
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