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Abstract

CDS with some liquidity are limited to under 500 corporate names globally. We
deploy modern data analytics to develop a practical and robust predictive regres-
sion linking liquid CDS premiums of different tenors to a set of common factors and
obligor/instrument-specific attributes. This model can then be used to generate proxy
CDS curves for corporates without liquid or quoted CDS. The key attributes among
many potential predictors are (1) the actuarial spread that reflects the actuarial value
of a CDS which is available for all exchange-listed firms globally, and (2) credit market
environment variables such as aggregate CDS indices.
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1 Introduction

Corporate credit default swap (CDS) par spread (i.e., standardized premium) is the market

price of credit risk posed by a corporate obligor, reflecting probability of default, recovery

rate on the reference debt instrument, additional risk premium demanded by risk averse

economic agents, liquidity condition of the CDS market, and potential counterparty default.

CDS are commonly used for risk benchmarking in credit risk management in general and in

accounting practice in particular, where the latter pertains to the new accounting reporting

standards on credit exposures (e.g., IFRS-9 for international firms and CECL for US firms).

However, CDS with adequate liquidity are hard to come by, and are by any reasonable

standard less than 500 corporate names globally. CDS users must either confine their usage

to this limited subset of liquid CDS or simply resort to some aggregates derived from the

liquid CDS in different industry/rating combinations made available by commercial vendors

such as IHS Markit.

We offer in this paper an intuitive, practical and robust predictive regression model,

linking liquid USD-denominated CDS par spreads of different tenors to a set of obligor-

specific attributes and some common factors. This model can then be used to generate

proxy CDS curves for corporates without liquid or quoted CDS. The model is developed

as a single universal predictive regression for all corporate CDS over a long time span, and

it delivers an R2 of over 70% out-of-sample and performs robustly for different subgroups

of interest. The key to success hinges on the actuarial spread (AS) made available by the

Credit Research Initiative (CRI) team of National University of Singapore, which produces

daily updated ASes, among other credit risk measures, on all exchange-listed firms globally,

and these data are freely accessible. AS as a predictor alone is found to deliver an R2 of over

35%. Other obligor-specific attributes in the predictive regression include investment vs.

speculative grades based on an obligor’s credit rating, and some general credit environment

variables. Most noteworthy is the set of four CDS indices constructed for four subgroups of

corporate names – investment-grade, high-year, financial and non-financial. The CDS Big

Bang in April 2009 is another factor of interest, which introduced several key changes to

CDS trading including (1) setting the fixed premium rate to either 100 or 500 basis points

while using an upfront fee to offset the effect of the fixed premium rate, and (2) removing

reorganization as part of the default definition.
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Operationally speaking, our predictive regression model, constructed with the 15-year

historical record on 405 corporate CDS names, makes it possible to generate daily-updated

proxy CDS curves on over 36,000 currently active exchange-listed corporates globally, re-

flecting the CRI’s coverage of virtually all exchange-listed firms in the world today.

CDS and corporate bond pricing is a much researched topic in the literature, and theo-

retical pricing models abound; for example, Merton (1974), Longstaff and Schwartz (1995),

Duffie and Singleton (1999), Duffie and Lando (2000), Das and Sundaram (2000), and Hull

and White (2000), to name just a few. By design, these theoretical models mainly focus on

the risk premium arising from risk aversion of economic agents, and are typically stylized in

a way to avoid practical complications such as multiple risk drivers, liquidity, counterparty

default, or supply-demand imbalance. These theoretical models also come with unknown

parameters that need to be estimated, and some of the models go further to rely on latent

variable(s), for example, unobserved default intensities. In order to have reasonable empir-

ical performance, the unknown parameters and/or latent variable(s) need to be estimated

with market prices on some credit-sensitive instruments such as corporate bonds and/or

CDS on the obligor in question. Since the model parameters and/or latent variable(s) are

obligor-specific, they cannot be easily ported to CDS referencing different obligors. In short,

these theoretical models are limited to applications on the pricing of CDS on corporates with

traded bonds and/or CDS.

Empirical studies of corporate CDS are even more numerous to cover all. Most studies

were designed to focus on whether CDS are priced according to some theory as opposed to

addressing how CDS can be practically priced through a predictive relationship developed

on other liquid traded CDS. Ericsson, et al (2009), for example, studied the CDS premium

in relation to three general theoretical predictors – leverage, volatility and riskless interest

rate – on a firm-by-firm basis to find an average R2 in the order of 60%. When dealing

with the three predictors on an individual variable basis, the average R2 drops to less than

15%. Since the regression is run on a firm-by-firm basis, the coefficients developed on one

corporate with traded CDS cannot be used for other corporates without CDS even if one is

satisfied with the level of R2 based on the three-variable model. In short, their study confirms

the theoretical prediction by addressing the issue of “why” but offers no practical answer

to “how” to apply the model. The relationship of CDS premium vs. corporate bond yield
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spread (risky bond yield minus riskless bond yield) of the same tenor on the same obligor

has been the subject of many empirical studies, for example, Blanco, et al (2005) and Zhu

(2006) confirmed a long-run parity relationship between the two credit risk measures. Kim,

et al (2017) further investigated the basis (CDS premium vs. corporate bond yield spread)

behavior to see whether basis arbitrage is possible. This line of studies again sheds light on

whether a theory holds or arbitrage opportunity exists, but offers no practical solution to

predicting CDS for corporates without traded bonds of comparable terms.

Our CDS prediction model utilizes the advancement in modern big-data analytics, partic-

ularly the zero-norm penalty regression, which means that one chooses an optimal subset of

k regressors among all potential predictive variables. When the number of potential regres-

sors increases to, say, several hundred, the number of possible combinations quickly becomes

astronomical, making an exhausted search infeasible even with modern high-power comput-

ers. In this paper, we apply the zero-norm penalty regression technique developed by Duan

(2019), which utilizes sequential Monte Carlo simulations. Modern penalty regression tech-

niques are typically based on the l1-norm due to computational considerations; for example,

the Lasso of Tibshirani (1996), the SCAD of Fan (1997) and Fan and Li (2001), and the

adaptive Lasso of Zou (2006). However, selecting regressors based on the zero-norm penalty

is conceptually more appealing, because it directly addresses the essence of the variable se-

lection problem. Computing speed aside, it works better because regression coefficients will

not be distorted by the penalty term (i.e., shrinkage toward zero even being selected). Also

interesting to note is the fact that the regression model fit, measured by R2, is invariant to

linearly transforming a group of regressors but the corresponding lp (p > 0 & 6= 2) penalty

term is not. Therefore, multicolinearity will interfere with regressor selection based on an

lp (p > 0 & 6= 2) penalty, but not with the zero-norm regressor selection.1 Readers are

referred to Duan (2019) for a theoretical explanation and simulation evidence of its superior

performance.

We consider 42 variables and their interaction terms to have a total of 810 potential

regressors in developing this predictive model. The data are USD-denominated CDS par

spreads for 405 reference obligors with tenors from 1 to 5 years with a monthly frequency over

1Although an l2-norm penalty regression, i.e., ridge regression, will not encounter this kind of distortion,
it is well known to exhibit poor ability in reducing the number of regressors.
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the period from August 2001 to February 2017. In addition to US corporates, there are firms

from 21 other economies, totaling 141,749 observations in 10 industries by the Bloomberg

Industry Classification System. Our zero-norm penalty regression employs a five-fold cross

validation on a training sample of two-thirds of the whole dataset, which is randomly chosen

with the remainder saved as a holdout sample for an out-of-sample performance study. Our

method selects an optimal combination of 20 regressors from the 810 potential variables, and

many of them are interaction terms. This predictive regression model delivers an R2 of over

70% in-sample and out-of-sample, and is found to be fairly stable across different subgroups

of interest.

2 Constructing proxy CDS curves

Our approach to constructing a practical proxy CDS curves on five specific tenors (1, 2,

3, 4 and 5 years) is entirely empirical but guided with economic intuition. We first gather

a substantial sample of USD-denominated CDS par spreads, spanning over 15 years on a

monthly frequency for as many corporate names as we can obtain. Next, we move on to

identifying a set of attributes that are concurrently available and intuitively related to the

market price of CDS. By considering the interaction terms of these attributes, we obtain a

very large set of potential explanatory variables, which in fact equals 810. Finally, we rely

on a zero-norm penalty based variable selection technique to conclude that a subset of 20

regressors can robustly predict CDS par spreads.

2.1 The CDS data

Our CDS par spreads are the Bloomberg computed CDS averages with end-of-day set to

6:00pm EST (New York time). We focus on USD-denominated CDS and extract data from

Bloomberg on a monthly frequency starting in August 2001 all the way to February 2017.

The 405 corporate names in our extracted USD-denominated CDS sample include beyond

US firms (309 out of 405) to cover firms from 21 other economies with Canadian firms being

the second largest group (20 out of 405). The firms in the sample covers all 10 industries

according to the Bloomberg Industry Classification System with Financial being the largest

containing 73 firms and Diversified being the smallest having 4 firms. The five CDS tenors
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are fairly equally distributed where 354 firms with 1-year, 319 with 2-year, 356 with 3-year,

314 with 4-year and 404 with 5-year. Define the post 2008 global financial crisis period as

September end of 2008 and afterwards. The post-crisis sample contains 395 firms, whereas

the pre-crisis sample has 244 firms. The CDS Big Bang occurred on April 8, 2009, and our

post-Big Bang period of monthly frequency naturally starts from April 2009 onward dividing

the sample into 374 and 372 firms in the post and pre Big Bang periods, respectively. The

CDS sample contains 141,749 firm/month/tenor observations in total with 118,401 being

investment-grade and the rest being high-yield. Some descriptive statistics on the CDS data

with and without applying a transformation are provided in Table 1.

We construct the proxy CDS model using the transformed value of CDS. If we directly

built the prediction model on the original CDS values, the model would often generate

negative predictive CDS values, which is obviously undesirable. Our transformation is

ln(exp(CDS/100)− 1) which requires some explanation. Note that CDS is per usual stated

in basis points. This transformation agrees with the natural logarithm when CDS has a

small value, but converges to itself (stated in percentage points) when CDS has a large

value. Were the natural logarithm the adopted transformation, it would end up distorting

large CDS values, implying that a good prediction model for the transformed CDS value

may still work poorly for the original CDS value. Our transformation is appealing because

it retains a nice property of the natural logarithm for small CDS values while avoiding the

distortion for large CDS values.

Our sample also contains 92 CDS data points referencing subordinated debt, and all are

5-year tenor with Shinshei Bank, a Japanese financial institution, as the reference entity.

The data on this subordinated debt CDS fall in the period from April 2006 to December

2013. The sample suggests that a great majority of CDS only references senior unsecured

debt.

The aforementioned categorical data characteristics (e.g., CDS Big Bang, investment-

grade vs. high-yield firms, etc.) will be used along with some other more granular attributes

concerning individual corporate names in constructing our proxy CDS model. And some of

the categorical features indeed play a prominent role in explaining CDS par spreads, and

can help predict CDS values when their market quotes are unavailable.
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Table 1: Single-regressor R2 and summary statistics for CDS and its 42 explanatory variables

R2 Mean Std Max Min

CDS(bps) 150.098 328.557 9592.201 1.235
Dependent Variable
T (CDS) 0.620 3.640 95.922 -4.388

Regressor
SIGMA 0.43800 0.079 0.056 0.949 0.023
T (ASlevel) 0.36034 -2.033 2.163 42.964 -14.850
T (AS) 0.35695 -2.220 2.573 149.907 -16.529
DTDlevel 0.21299 5.522 3.060 20.108 -1.176
isHY 0.21007 0.165 0.371 1.000 0.000
isIG 0.21007 0.835 0.371 1.000 0.000
SIZElevel 0.18403 3.541 1.439 8.138 -2.265
IndustryCCI 0.14844 17.956 7.066 45.310 3.299
NITAlevel 0.13205 0.004 0.006 0.076 -0.060
T (CDSNonFin) 0.12971 -0.174 0.739 1.959 -1.558
T (CDSHY) 0.12867 2.913 1.581 7.655 0.327
T (CDSIG) 0.12800 -0.339 0.704 1.631 -1.772
T (CDSFin) 0.12534 0.671 1.521 4.608 -2.116
CountryCCI 0.11268 21.654 11.801 177.497 0.439
VIX 0.09923 21.693 9.611 59.890 10.420
SIZEtrend 0.07264 -0.004 0.179 1.645 -1.896
TLTA 0.06461 0.669 0.179 2.032 0.121
T (AS)trend 0.02692 -0.187 1.454 120.101 -31.358
DTDtrend 0.01910 0.109 1.356 6.135 -7.047
3mRateUS 0.01886 0.677 1.303 5.124 -0.020
Tenor1y 0.01708 0.180 0.384 1.000 0.000
preCrisis 0.01643 0.212 0.409 1.000 0.000
postCrisis 0.01643 0.788 0.409 1.000 0.000
Tenor5y 0.01332 0.341 0.474 1.000 0.000
isFin 0.00975 0.147 0.354 1.000 0.000
isNonFin 0.00975 0.853 0.354 1.000 0.000
NITAtrend 0.00422 0.000 0.007 0.104 -0.146
3mRateEcon 0.00383 0.958 1.740 23.770 -0.080
SwapSpread5vs1 0.00307 1.108 0.636 2.518 -0.356
Tenor4y 0.00228 0.146 0.353 1.000 0.000
CASHTAlevel 0.00196 0.091 0.109 0.979 0.000
isSub 0.00109 0.001 0.025 1.000 0.000
isSenior 0.00109 0.999 0.025 1.000 0.000
preBigBang 0.00099 0.285 0.451 1.000 0.000
postBigBang 0.00099 0.715 0.451 1.000 0.000
Tenor2y 0.00085 0.144 0.351 1.000 0.000
Tenor3y 0.00080 0.189 0.391 1.000 0.000
CASHTAtrend 0.00068 0.001 0.029 0.483 -0.334
isUS 0.00004 0.858 0.349 1.000 0.000
isNonUS 0.00004 0.142 0.349 1.000 0.000

Note: T (·) denotes a transformation: ln(exp(·/100)− 1).
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Before proceeding further, one needs to note that several dummy variables are used to

indicate the characteristics of individual CDS or the CDS environment; for the CDS Big

Bang, for example, we have adopted two dummy variables: preBigBang and postBigBang.

A quick reaction is that we have unnecessarily added one extra dummy variable, which should

result in an identification problem in the subsequent linear regression analysis. However, it

is not the case when interaction terms are included in a variable selection context. This is

because a particular variable combination, say, 10 variables, involving one particular dummy

may not be replicable by its complementary dummy subject to the constraint of having 10

variables in a combination. The argument also applies to five CDS tenors for which we create

five dummy variables instead of four per the usual practice in linear regressions.

2.2 The variables used to predict CDS curves

Variables that capture financial conditions of individual corporate obligors and reflect general

credit environment are natural candidates for predicting CDS premiums. With the availabil-

ity of the Credit Research Initiative (CRI) database at the National University of Singapore,

a CDS-like credit risk measure, known as actuarial spread (AS), constructed with physical

default probability (PD) term structure is readily available on a daily basis on all exchange-

listed firms worldwide. Also available on the CRI database are (1) a suite of daily series of

credit cycle indices (CCIs) capable of reflecting the credit environment in general and/or for

different industries, and (2) distance-to-default (DTD) estimates for individual firms which

is loosely speaking an asset volatility adjusted leverage measure. In the following, we will

briefly describe the CRI database, AS, CCI and DTD.

The CRI, launched in 2009 in response to the 2008 global financial crisis, was conceived

as a public good endeavor to contribute to credit rating reform (see Duan and van Laere,

2012). The CRI has been making its PDs and other credit risk measures freely accessible

since day one. The CRI-PDs are computed with the forward-intensity model of Duan, et

al (2012), which was designed for obtaining the PD term structure while factoring in the

censoring effect arising from other corporate exits such as M&As. The CRI coverage includes

virtually all exchange-listed firms globally, and its PDs (1 month to 5 years) and ASes (1 year

to 5 years) are updated daily on over 36,000 currently active firms. Historical time series are

also available on 70,000 plus firms including those delisted corporates due to bankruptcies,
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M&As and other reasons.2

The PD term structure is useful for many applications. A 5-year CDS is, for example, a

sort of complex average of PDs over the life of the contract mixed with recovery rate, risk

premium demanded by market participants, market liquidity, and potential counterparty de-

fault. Duan (2014) showed how AS can be constructed from the PD term structure to mimic

CDS of any tenor except for leaving out risk premium, market liquidity and counterparty

default. In short, AS is the actuarial value of CDS, which is in principle the closest risk

measure to CDS without committing to a specific CDS pricing model. Since the CRI also

makes freely available the daily updated ASes (1- to 5-year tenors) on all exchange-listed

firms globally, AS becomes our natural candidate for predicting CDS.3 This choice is clearly

supported by the individual R2 reported later where ln(exp(AS/100)− 1) is shown to have

an R2 of 35.7% on a single-regressor basis in explaining ln(exp(CDS/100)− 1).

In addition, we also consider its transforms – the level and trend of ln(exp(AS/100)− 1).

The 12-month moving average of AS plugged in the transform is ln(exp(ASlevel/100) − 1)

whereas the difference between ln(exp(AS/100)− 1) and ln(exp(ASlevel/100)− 1) is treated

as the trend. These three variables are obviously linearly dependent by design, but we

include all three in the set of 42 potential regressors. Choosing a subset of regressors subject

to a zero-norm penalty will naturally avoid picking all three, because having all three does

not increase explanatory power but only adds to the penalty.

In Duan and Miao (2016), a suite of credit cycle indices (CCIs) were used to describe

the credit environment. The country CCI at a particular time point is in our deployment

the median AS value for a corresponding tenor where the median is taken over all exchange-

listed firms domiciled in that country at that time point. Likewise, industry CCIs are the

median ASes for the 10 industries globally according to the Bloomberg Industry Classification

System. Our CCIs differ from those of Duan and Miao (2016) in two aspects. First, we use

AS in stead of PD because our interest is on CDS where the AS has been constructed with

the CDS convention in mind. Second, we use the original median series instead of further

2For the technical details on how these PDs and ASes are computed, readers are referred to NUS Credit
Research Initiative Technical Report Version: 2020 Update 1 available at http://www.rmicri.org.

3The CRI ASes are computed by default with the 40% recovery rate. We adjust those ASes for CDS
referencing subordinate debt by lowering the recovery rate to 20%.
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subjecting 10 industry CCIs to orthogonalization. In our case, the CCIs are simply used as

regressors and the correlations among the CCIs do not affect our regressor selection because

the selection technique deployed relies on the zero-norm penalty. Naturally, CDS pricing is

expected to reflect the credit environment in general as well as those in different industries,

and CCIs are simply used as credit environment indicators.

We have also added four aggregates of CDS spreads to reflect general CDS market condi-

tions in different segments of the CDS market. Specifically, we define CDSindexIG, CDSin-

dexHY, CDSindexFin, and CDSindexNonFin to be the median CDS par spread in each of

four CDS categories: investment-grade, high-yield, financial and non-financial reference cor-

porate names. In this construction, we require five as the minimum number of traded CDS

with liquidity in each category on the day. Otherwise, it will be tagged as a missing value.

The single-variable regression results suggest that each of these four CDS indices provides

an R2 in excess of 12%.

DTD based on the structural credit risk model of Merton (1977) is a commonly adopted

measure in credit analysis. Although the concept is standard, its implementation can be

challenging due to the fact that the underlying firm asset value in the call option like theo-

retical setup of Merton (1977) is a latent stochastic process. The Moody’s KMV approach

has been widely adopted in both academic and commercial applications, which relies on an

iterative scheme to estimate the unknown model parameters, the latent firm asset value, and

finally the DTD. However, the Moody’s KMV approach has statistical shortcomings because

it fails to properly account for the Jacobian arising from the call option pricing function, and

thus causes some biases. The Moody’s KMV approach also specifies a default point formula

(100% short-term debt plus 50% long-term debt), which serves as the strike price in the call

option analogy. Interestingly, the missing Jacobian also places an implementation limitation

whenever the default point formula justifiably needs an expansion to include other liabili-

ties subject to an unknown haircut. Adding to the Moody’s KMV default point formula is

evidently important for financial institutions where a large portion of corporate liabilities is

classified as neither short-term nor long-term; for example, deposits of a bank and policy

obligations of an insurance company. The CRI database generates DTDs as per Duan, et al

(2012) to accommodate other corporate liabilities.4

4Readers who are interested in technical details are referred to Duan, et al (2012) and/or NUS Credit
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In addition, we consider common drivers such as interest rate, interest rate term spread

and VIX, and individual firm attributes like funding liquidity, leverage, profitability, size, and

idiosyncratic equity return volatility (SIGMA). These variables along with the categorical

CDS characteristics described earlier are summarized in Table 1. Also reported in Table 1

are the individual R2 when each of these variables is used as a single regressor along with an

intercept term. The results suggest that SIGMA is the best single predictor with an R2 of

43.8% and closely followed by two AS-based measures at 36% and 35.7%, respectively. Many

of these 42 potential regressors have a decent individual R2. It is worth noting that both

the categorical CDS characteristic like isSub (equals 1 if the CDS references a subordinated

debt) or the CDS market structural change captured by postBigBang (equals 1 for the

period post the April 2009 CDS Big Bang) has a minuscule R2, but our later results show

that postBigBang still plays a meaningful role through interacting with another variable. In

the case of isSub, we force it to be a chosen regressor for otherwise its explanatory power will

simply be dwarfed due to its relatively minuscule sample size. Table 2 provides correlations

among some selected regressors. It is clear from this table that some regressors are highly

correlated, for example, ln(exp(AS/100)−1) and ln(exp(ASlevel/100)−1). The CDS indices

are also highly correlated among themselves.

2.3 Linear regression subject to a zero-norm penalty

In a general classical linear regression setting, one attempts to relate a dependent variable

to k regressors where there are n data points. When there are too many potential regres-

sors vis-a-vis the number of data points, in-sample over-fitting is expected and removing

some regressors becomes both conceptually sensible and practically necessary. There has

been a long-standing interest in designing theoretically sound and practically implementable

methods for selecting regressors. In order to have a more concrete discussion, we state the

regressor selection problem as follows:

y = Xβ + ε (1)

where y = (y1, · · · , yn)′, and X denotes the n observations of k regressors, i.e., X =

(x1, · · · ,xk) with xi = (x1, · · · , xn)′, of which the first vector may represent the intercept

Research Initiative Technical Report Version: 2020 Update 1.

11



Table 2: Correlations for a subset of regressors

Regressor T (AS) 3mRate SwapSpread DTDlevel SIGMA T (CDSHY) T (CDSFin)
Econ 5vs1

T (AS) 1.000 -0.002 0.096 -0.675 0.554 0.279 0.257
T (ASlevel) 0.825 -0.032 0.160 -0.793 0.643 0.228 0.228
T (AS)trend 0.542 0.043 -0.068 -0.014 0.022 0.154 0.116
3mRateEcon -0.002 1.000 -0.385 0.028 -0.068 -0.217 -0.331
3mRateUS -0.014 0.749 -0.526 0.096 -0.084 -0.315 -0.453
SwapSpread5vs1 0.096 -0.385 1.000 -0.226 0.213 0.192 0.235
VIX 0.241 -0.154 0.143 -0.251 0.332 0.864 0.845
TLTA 0.268 -0.002 0.000 -0.316 0.188 -0.005 -0.008
CountryCCI 0.429 -0.091 0.320 -0.370 0.410 0.537 0.536
IndustryCCI 0.484 0.009 0.194 -0.428 0.438 0.605 0.570
CASHTAlevel 0.032 -0.037 -0.010 -0.070 0.104 -0.037 -0.026
CASHTAtrend -0.001 -0.005 0.083 -0.040 0.078 0.025 0.033
NITAlevel -0.375 0.052 -0.096 0.485 -0.426 -0.054 -0.056
NITAtrend -0.050 -0.003 0.040 -0.012 0.009 -0.068 -0.059
SIZElevel -0.317 0.301 -0.047 0.406 -0.429 -0.084 -0.115
SIZEtrend -0.293 -0.020 0.097 0.015 -0.005 -0.085 -0.057
DTDlevel -0.675 0.028 -0.226 1.000 -0.594 -0.315 -0.324
DTDtrend -0.212 -0.079 0.198 -0.052 -0.166 -0.370 -0.297
SIGMA 0.554 -0.068 0.213 -0.594 1.000 0.389 0.394
isUS 0.020 -0.473 0.043 0.028 0.023 0.020 0.038
isNonUS -0.020 0.473 -0.043 -0.028 -0.023 -0.020 -0.038
isFin 0.183 0.096 -0.016 -0.248 0.068 -0.023 -0.029
isNonFin -0.183 -0.096 0.016 0.248 -0.068 0.023 0.029
Tenor1y -0.265 0.020 0.000 0.013 -0.021 0.008 0.022
Tenor2y -0.047 -0.143 0.060 -0.005 0.012 0.061 0.100
Tenor3y 0.012 0.024 -0.004 0.020 -0.024 -0.002 0.010
Tenor4y 0.070 -0.166 0.064 0.005 0.010 0.057 0.097
Tenor5y 0.188 0.193 -0.089 -0.028 0.021 -0.093 -0.172
isHY 0.313 -0.022 0.012 -0.387 0.420 0.052 0.062
isIG -0.313 0.022 -0.012 0.387 -0.420 -0.052 -0.062
isSub 0.034 -0.010 -0.009 -0.042 0.019 0.001 0.001
isSenior -0.034 0.010 0.009 0.042 -0.019 -0.001 -0.001
preCrisis -0.004 0.664 -0.300 0.073 -0.079 -0.253 -0.443
postCrisis 0.004 -0.664 0.300 -0.073 0.079 0.253 0.443
preBigBang 0.094 0.571 -0.295 0.002 0.069 0.145 -0.047
postBigBang -0.094 -0.571 0.295 -0.002 -0.069 -0.145 0.047
T (CDSindexHY) 0.279 -0.217 0.192 -0.315 0.389 1.000 0.936
T (CDSindexIG) 0.258 -0.309 0.172 -0.317 0.344 0.944 0.948
T (CDSindexFin) 0.257 -0.331 0.235 -0.324 0.394 0.936 1.000
T (CDSindexNonFin) 0.261 -0.296 0.135 -0.306 0.343 0.939 0.916

Note: T (·) denotes a transformation: ln(exp(·/100)− 1).
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term. β = (β1, · · · , βk)′ is the k-dimensional regression coefficients, and ε is n-dimensional

i.i.d. errors with mean 0 and variance σ2 that may or may not be normally distributed. The

task is to select ks ≤ k regressors meeting some criterion, or alternatively, to set some β’s to

zero.

The classic way of performing such a task is a greedy-search technique that starts with

one regressor with the highest R2, finds the second regressor that delivers the highest R2

in explaining the residual from the best one-regressor model, and then repeats the search

sequentially until the stopping criterion is reached. The greedy-search technique is known to

be suboptimal because a combination of, say, two regressors may deliver a better predictive

power while they individually do not produce top explanatory power. In principle, one

could exhaust all possible combinations to find the ideal subset of ks regressors. Practically

speaking, however, it is not feasible when the number of potential regressors is large. When

ks is unknown, there will be 2k potential models, and with 810 potential regressors in this

paper, for example, it creates 2810 = 6.8× 10243 potential models. As the later result shows,

we end up selecting 20 regressors out of 810 potential explanatory variables, which means

4.8× 1039 possible combinations for a 20-variable model.

A popular modern way of performing regressor selection is through an l1-norm penalty,

commonly known as Lasso, advanced by Tibshirani (1996) and subsequently improved by,

for example, SCAD of Fan (1997) and Fan and Li (2001), and adaptive Lasso of Zou (2006).

The Lasso and its variants have found great popularity in big-data applications these days

due to their simplicity and computational efficiency. However, regressor selection based

on the l1-norm penalty is not most conceptually appealing albeit its practicality. This is

because regression coefficients will be distorted by the penalty term (i.e., shrinkage toward

zero even being selected). Even though the SCAD and adaptive Lasso do have the oracle

property5, i.e, distortion disappears when the sample size approaches infinity, it is mostly a

feature that bears limited practical relevance because in applications the sample size vis-a-vis

the number of regressors is unlikely large enough. A more practical concern is perhaps the

issue of multicollinearity which analysts inevitably encounter in practice. To understand this

point, let us rotate a group of mutually independent regressors to become linearly dependent

regressors, knowing that such rotation will not alter the regression model fit, measured by

5See Fan and Li (2001) for a formal definition of the oracle property.
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R2. However, the l1 norm of the regression coefficients is not invariant to a rotation, and

hence the rotation will change the model’s l1 penalty, giving rise to a different penalized

estimation outcome. In short, multicollinearity may lead to an undesirable variable selection

outcome when an l1-norm based method is deployed. This concern is not a purely theoretical

possibility, because the situation repeatedly occurs in many practical applications and the

simulation study in Duan (2019) has also clearly demonstrated that the adaptive Lasso

greatly over-selects variables.

In principle and probably without contention, a more appealing and direct approach

to regressor selection is to pick a fixed number of regressors, say, ks, where the selection is

optimally conducted by minimizing squared residual errors, i.e., the l2 norm, over all possible

combinations. As to ks, it can be determined, for example, by applying cross validation or

the BIC. Such a variable selection approach is known as applying a zero-norm penalty, a

term commonly used in scientific computing and big-data analytics. It is viewed as the zero

norm because the standard lp norm approaches this zero-norm when p goes to zero even

though such a limiting l0 “norm” is not a proper norm because of its lack of homogeneity.

The penalized regression subject to the zero-norm regularization can be formally stated as

arg minβ ||y −Xβ||2l2 (2)

s.t. ||β||l0 ≤ ks ≤ k

where || · ||l2 is the l2-norm and || · ||l0 is the zero-norm, which counts the number of non-zero

entries in β. Also worth noting is the fact that the above minimization problem is equivalent

to arg minβ

{
||y −Xβ||2l2 + λ||β||l0

}
where the solution is a step function of λ with the

jumps corresponding to different values of ks. This zero-norm penalized regression problem

is known to be NP-hard. But the benefit is that this variable selection approach is free of

the distortion caused by interference of the l2-norm objective with the l1-norm penalty in the

presence of multicollinearity. What preventing its adoption in practice is the computational

challenge in dealing with extremely large possible combinations that we alluded to earlier.

Typical solutions are by approximating the l0 norm with a penalty function very close to it,

for example, Dicker, et al (2013). Here we are able to implement the zero-norm regressor

selection without approximating the penalty function by deploying the sequential Monte

Carlo method developed by Duan (2019).
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2.4 The selected proxy CDS model

We apply a proprietary software made available by CriAT, a FinTech company, based on

Duan’s (2019) sequential Monte Carlo variable selection method. Selection is performed

on a randomly selected training subsample of 94,499 CDS observations (two-thirds of the

whole sample) along with their attributes mentioned earlier. Once the optimal combination

under a ks is identified, we repeat the selection for different values of ks and use a five-fold

cross-validation to determine the optimal ks. In the end, we obtain the optimal zero-norm

solution as 20 regressors out of 810 potential variables (including all meaningful interaction

terms).6 In order to ensure that the CDS referencing subordinated debt are not overwhelmed

in competition with other CDS due to their small sample size (61 in the training sample), the

isSub dummy variable is always included in the model, which means we have actually chosen

19 regressors to come up with the 20-variable proxy CDS model. Note that the intercept

term is treated as a potential regressor and not chosen in the final 20-variable model.

Table 3 lists the 20 selected variables using the training sample of 94,499 data points via

a five-fold cross validation. This model yields an R2 of 73.98%. We have argued earlier that

AS is a variable conceptually closest to its corresponding CDS, and the selection result is

consistent with this intuition. Thus, it is natural to see ln(exp(AS/100) − 1) and its close

substitute ln(exp(ASlevel/100)− 1) to show up through interaction terms.

Two of the four CDS indices (CDSindexFin, CDSindexNonFin) appear in the selected

variables. Intuitively, this can be expected for they characterize the CDS market conditions

in a way like stock market indices. The single-variable regression results reported earlier also

suggest a high likelihood for them to show up along other variables. Indeed, they form a

prominent group of variables in the final model. One can, for example, interpret the selection

result as ln(exp(CDSindexFin/100)−1) influences CDS values through a variable coefficient

equal to (0.5694 × TLTA − 0.3138 × SwapSpred5vs1), reflecting different levels of response

depending on whether the reference name’s book leverage ratio and the market’s prevailing

6With the 42 explanatory variables, there are 43 potential regressors after including the intercept term.
If all interaction terms are considered, the maximum number of potential regressors is increased to 946
(= 43 × 44/2). However, some of the terms are redundant when the intercept and/or a dummy variable is
involved; for example, squaring a dummy variable yields exactly the same dummy variable, and the product
of the intercept with the 42 original variables produces the same set of 42 variables. After trimming the
redundant regressors, the total count drops to 810.
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swap rate spread (5-year vs. 1-year).

The CDS value also responds to SIGMA, which is the corporate equity’s idiosyncratic

volatility. Again, this is totaly anticipated because the single-regressor result reported earlier

in Table 1 suggests it to be the regressor with the highest explanatory power. The impact of

SIGMA on CDS values again is through many interaction terms with some being common and

others being firm-specific. In addition, accounting ratios such as TLTA (total liabilities over

total assets) and NITAlevel (net income over total assets’s 12-month moving average) enter

the predictive equation. Other firm-specific measures such as SIZE (both level and trend),

or common factors such as industry and country CCIs (credit cycle indices), interest rates

(the domicile country), swap rate spread and VIX are also relevant to the CDS prediction.

The results also suggest that the post-CDS Big Bang dummy can help predict CDS values

but the 2008 global financial crisis does not make an additional contribution. The CDS value

is apparently also influenced by when the reference corporate is a US firm and whether it is

investment grade rated by credit rating agencies.

Worth noting is the fact that tenor5y is able to add significant predictive power to the

proxy CDS model albeit the fact that the AS is a tenor-specific CDS-like credit risk measure,

suggesting that the premium for a five-year CDS will be relatively higher given other aspects

are equal. As stated earlier, the subdebt dummy is forced upon the selected model due to

its minuscule sample size of 61 vis-a-vis the total sample size of 94,499. Doing so is to avoid

the inevitable outcome that the isSub dummy would be competed away by other variables

even though it is a highly significant regressor as suggested by its estimate reported in Table

3.

3 The out-of-sample performance of the proxy CDS

model

We now apply the optimally selected subset of regressors on the holdout sample of 47,250

observations to study the proxy CDS model’s out-of-sample performance. As reported in

Table 4, our 20-variable proxy CDS model has an in-sample R2 of 73.98% on the training

sample of 94,499 observations when the target is the transformed CDS value. However, the
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real usage is concerned with the CDS value in its original form. After converting back to

predict CDS directly, the in-sample R2 drops slightly to 72.11%. The model’s performance,

measured by the out-of-sample R2 on the holdout sample, are 73.79% for the transformed

CDS and 71.78% for the original CDS, respectively, which are only slightly lower than their

respective in-sample R2.

To examine whether the proxy CDS model exhibits any bias behavior for different sub-

groups, we present a set of plots in Figure 1. However, we first plot the in-sample predicted

vs. realized values for CDS and transformed CDS (top two plots) based on the training

sample of 94,499 observations, which is used to gauge the potential distortion caused by the

transformation. As these two plots reveal, the proxy CDS model built on predicting the

transformed CDS generates a similar result for the original CDS values. The R2 displayed

on the plot should be understood as the ex post best linear relationship between the observed

CDS value (vertical axis) and the proxy CDS value (horizontal axis) when the relationship is

computed for a particular group. Such an R2 will naturally be higher than its corresponding

R2 reported in Table 4, because an additional intercept and a flexible slope are introduced.

In other words, those R2 in Table 4 can be understood as setting the intercept to 0 and the

slope to 1.

The out-of-sample results for the whole and various subgroups of the holdout sample

(47,250 observations for 405 corporates with five tenors over the entire sample period on

a monthly frequency) are reported in Table 4 and Figure 1. Among all subcategories, the

proxy CDS model has the worst out-of-sample performance for CDS referencing subordinate

debt with an R2 at 61.14%. Despite the fact that the corresponding plot in Figure 1 seems

to show good performance at an R2 of about 80%, one should reference the R2 in Table

4 for the subdebt category as opposed to the R2 on the plot, and the reason was given

earlier. The in-sample R2 for the subdebt group equals 62.74%, at about the same as the

out-of-sample R2, suggesting a rather stable performance even for the subdebt category.

Note that this subordinate debt group only has 92 observations in total and all for Shinshei

Bank over the entire sample period. The training sample contains 61 subdebt data points,

and the cross-validation would not have selected the subdebt dummy if we did not force it

upon the model. The subdebt dummy interacting with other variables might improve the

performance of the model for this subcategory of CDS if some interactive terms were also
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forced upon the model. Failure to do so, those potential interactive terms would be crowded

out by the need to better fit a disproportionably larger number of CDS that reference senior

debt. If more CDS referencing subordinate debts are available, we expect to improve the

proxy CDS model’s performance for this subcategory. Apart from the subdebt group, the

results in Table 4 and the plots in Figure 1 suggest some performance difference for CDS of

different tenors, but the better out-of-sample result for the 5-year tenor vis-a-vis the 1-year

tenor is not particularly large. It is worth to re-emphasize that the proxy CDS model serves

as a universal predictor across different tenors and other attributes. The fact that it delivers

comparable performance for different tenors reflects the benefit of using AS as a predictor,

which by design captures credit quality specific to a reference obligor over different tenors.

Further comparisons (US vs. non-US and financial vs. non-financial reference obligors)

are also shown in Table 4 and Figure 1, and their performances do not differ too much, even

though the performance favors CDS referencing US and financial obligors. We also compare

the data before and after the 2008 global financial crisis with the post-crisis period defined

as starting from the end of September 2008. Again, one cannot find a large performance gap

pertaining to the potential structural break induced by the global financial crisis. Finally,

we find the predictive regression works marginally better out-of-sample post the April 2009

CDS Big Bang.

4 Concluding Remarks

We have developed a proxy CDS model that can robustly predict CDS par spreads for

corporate obligors which do not have traded or liquid CDS contracts. This predictive model

has many applications for credit risk management in general and accounting practice in

particular. Our approach appears to be entirely empirical, but actually utilizes a critical

theoretical result in connection with the actuarial spread model of Duan (2014), and it is

this variable that makes the predictive model successful. If one can develop a high-quality

theoretical pricing model for CDS (incorporating risk premium due to risk aversion and/or

factoring in counterparty default) and implement the model solely using equity prices, such

a measurement may then serve as a better predictor for CDS. Even with a good CDS pricing

model in place, practical usage likely still needs further empirical tuning in a way similar to
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our approach.

Our empirical model can be viewed as a concrete demonstration of modern big-data

analytics in action. Critical to our success is the zero-norm penalty variable selection tech-

nique, which enables us to identify 20 regressors among 810 potential variables (including

interaction terms) arising from 42 original variables. Although the 42 original variables are

chosen for their data availability and based on economic intuition, identifying the optimal

set of regressors in light of the astronomical number of possible combinations would not

have been possible without such a big-data analytical tool. Obviously, many other financial

applications may also adopt a similar approach.
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Table 3: Selection of 20 regressors out of 810 potential variables (interaction terms included)
using a training sample of 94,499 observations via a five-fold cross validation

Training Sample
Regressor Estimate Std. Error t-Stat
T (AS)*VIX 0.012532 0.000159 78.62
T (ASlevel)*isHY 0.371620 0.007843 47.38
T (AS)trend*SIZEtrend 0.304932 0.005852 52.11
T (AS)trend*isIG -0.260963 0.007547 -34.58
IndustryCCI*isHY 0.073927 0.001166 63.41
IndustryCCI*postBigBang 0.037993 0.000739 51.41
CountryCCI*3mRateEcon 0.007591 0.000140 54.05
T (CDSindexFin)*TLTA 0.569360 0.014543 39.15
T (CDSindexFin)*SwapSpread5vs1 -0.313825 0.006405 -49.00
SIGMA*T (CDSindexNonFin) 7.841172 0.133864 58.58
SIGMA*TLTA 26.563192 0.196056 135.49
SIGMA*SIZElevel -2.825277 0.059294 -47.65
SIGMA*SIZEtrend -17.351329 0.212121 -81.80
SIZElevel*VIX 0.009153 0.000256 35.79
SIZElevel*TLTA -0.462154 0.007116 -64.94
SIZEtrend*NITAlevel 121.801512 4.122555 29.55
SIZEtrend2 2.609726 0.069613 37.49
isUS*isIG -0.392691 0.014613 -26.87
Tenor5y 0.473201 0.013663 34.63
isSub 2.390254 0.241578 9.89
R2 73.98%
Sample Size 94,499

(1) T (·) denotes a transformation: ln(exp(·/100)− 1);
(2) isSub is always included because its marginal R2 contribution would be

too small to be chosen due to the minuscule sample size of 61.
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Table 4: R2 of the proxy CDS model for the training and holdout samples as well as for
various subcategories

Training Sample Holdout Sample
Transformed CDS Obs Transformed CDS Obs

CDS CDS
Total 73.98% 72.11% 94499 73.79% 71.78% 47250
Subdebt 64.76% 62.74% 61 61.98% 61.14% 31
1-Year 69.24% 67.06% 17030 72.18% 70.56% 8518
5-Year 72.50% 70.93% 32271 74.78% 73.53% 16008
Investment Grade 69.73% 68.77% 78937 68.80% 67.46% 39464
High Yield 65.93% 65.53% 15562 65.22% 64.79% 7786
US 74.14% 72.31% 81159 74.36% 72.47% 40515
Non-US 72.22% 69.76% 13340 67.84% 63.31% 6735
Financial 75.13% 73.50% 13829 75.29% 73.50% 6949
Non-Financial 73.17% 71.17% 80670 72.99% 70.86% 40301
Pre-Crisis 68.66% 63.85% 19954 72.04% 68.94% 10089
Post-Crisis 73.99% 72.38% 74545 73.46% 71.68% 37161
Pre-Big Bang 74.72% 73.03% 26869 72.61% 70.44% 13491
Post-Big Bang 73.16% 70.92% 67630 74.92% 73.13% 33759
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Figure 1: Performance of the proxy CDS model in predicting CDS for the training and
holdout samples as well as various subcategories
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