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Abstract

Systemic risk of a banking system arises from cascading defaults due to interbank linkages.
We propose a model which distinguishes systemic risk from its drivers – systematic and id-
iosyncratic risks. Systemic risk is characterised by systemic exposure and systemic fragility,
corresponding to the expected losses and pervasiveness of defaults respectively (under a stress
scenario). The model takes into account the banking network, asset-liability dynamics, inter-
bank exposures and netting. Using actual data for 15 British banks, we find that systematic
shocks are more likely to drive systemic risk, as opposed to banks idiosyncratic elements. We
also demonstrate a method for ranking banks according to systemic importance.
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1 Introduction

The objective of this paper is to measure systemic risk, which enables the study of various bank-
ing network configurations. Specifically, systemic risk of a banking system arises from cascading
defaults due to interbank linkages. Any large negative external shock can in principle trigger cas-
cading defaults, but shocks to systematic risk factors, as opposed to banks’ idiosyncratic elements,
are more likely to drive cascading defaults and hence to cause higher systemic risk.

To put to rest any confusion over systemic risk and systematic risk, we begin by distinguishing
the two. Schwarcz (2008) defined systemic risk as “an economic shock such as market or institutional
failure (that) triggers the failure of a chain of markets or institutions, or a chain of significant losses
to financial institutions...” Noting that the concept of systemic risk is sometimes conflated with
systematic risk, he aptly distinguished the two. Systematic risk is commonly known in the finance
literature and refers to the type of risk that cannot be diversified away and therefore affects most,
if not all, market participants.

Caruana (2010)1 noted that an exogenous (systematic) shock can become systemic because of
direct common exposures. He also points out that the “financial system is a network of intercon-
nected balance sheets. As a result, an increasingly complex web of daily transactions means that
a shock hitting one institution can spread to the other institutions that are connected to it and
become systemic”. In short, he meant that systemic risk is more likely caused by a systematic
shock, and such a shock propagates through the banking system with stronger knock-on effects.

In a similar manner, Bandt and Hartmann (2000) disentangled “systematic shock” from “sys-
temic event”. Furthermore, they opined that a “key element in systemic events... is the mechanism
through which shocks propagate from one financial institution or market to the other. In our view,
this is the very core of the systemic risk concept.”

In summary, we state the concept simply as follows: systematic risk arises from exposures to
common risk factors, and systemic risk is purely due to interconnections. Although large systematic
risk may lead to systemic risk, they are not synonymous. We clearly distinguish and measure the
relative impact of these two effects by a structural model in which individual banks’ asset values
react to systematic risk factors in addition to their individual idiosyncratic risks. When a bank’s
asset value falls below a solvency threshold, moderated by, say, a liquidity consideration, the bank
fails, and its failure may knock out other banks through its inability to honor debt obligations
to others in the banking network. Our model is able to show that a banking system’s total risk
is attributable to systemic linkages, systematic factors and idiosyncratic shocks facing individual
members of the system.

Our work contrasts with the existing literature. By modelling the banking network, we are
able to formally and structurally distinguish systemic risk from systematic risk. Acharya, et al
(2010) defined “systemic expected shortfall” (SES) as the propensity of a financial institution

1General Manager of Bank for International Settlements at the time of making the observation.
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being undercapitalised when the system as a whole is undercapitalised. Their measurement relies
on the historical response of individual equity returns to market returns (adjusted for tail risk).
Brownlees and Engle (2012) built on the above and employed dynamic volatility models to come up
with a systemic measure known as SRISK, which is the extent of expected capital shortfall in the
economy experiencing a significant drop in the stock market. In essence, these approaches touch
upon the source of systemic risk as being systematic risk but without providing explicit channels.
In other words, their systemic risk measure is a reflection of correlations which could be due to
systematic risk and/or interbank linkages.

Hautsch, et al (2012) defined systemic risk beta as the marginal effect of a bank’s VaR on the
VaR of the entire financial system, whereas Adrian and Brunnermeier (2011) proposed CoVaR as the
VaR of the financial system conditional on institutions being under distress. Again, these are simply
measures of correlation of sort. In another paper, Billio et al (2011) used a principal component
analysis to decompose the returns of hedge funds, banks, brokers, and insurance companies. They
did not model the network effect directly, but viewed the extent of Granger causality in their
network as a proxy for return-spillover effects among market participants. Huang, et al (2010)
viewed systemic risk as the premium required to insure against systemic financial distress. Banks’
assets are associated with common risk factors, but bank interactions in a default event are otherwise
not modelled.

All in all, these approaches, albeit useful, rely on correlations revealed through the past data,
and their lack of structure in terms of the interplay between exogenous shocks and the bankruptcy
trigger makes them unsuitable for policy analysis such as asking what if the banking network is
altered in some way, say, through consolidation and netting arrangements.

Another line of research adopts network-based models, which can potentially capture the cas-
cade effect explicitly, and hence measure systemic risk. Semi-analytic solutions for network models
are obtained by a few authors. Giesecke and Weber (2005) adopted a model of interacting particle
systems used in physics while Horst (2007) used a “mean-field” model for firms’ credit ratings.
While interesting results are obtained, there are four obvious limitations with these analytic so-
lutions. Firstly, the strong assumption of homogeneity is required. Secondly, the linkages based,
for example, on mutual debt obligations, are an inadequate characterization of linkages because
the banks’ asset sizes and riskiness have not been explicitly accounted for. Thirdly, the source of
exogenous shocks are not explicit and their interplay with the functioning of the banking network
is not explicit. Lastly, the abstraction of financial systems into physical systems do not lend easily
to interpretation. Our structural model naturally accommodates heterogeneity using individual
balance sheets in a banking network and explicitly models systematic and idiosyncratic shocks that
generate endogenous cascading defaults through individual solvency conditions.

Still within the context of a network, other papers model the default of banks more explicitly.
Nier, et al (2007) relied on the adequacy of total assets, triggering a default when net worth is
inadequate. In the same vein, Marquez and Martinez (2009) compared exposures against bank-
specific thresholds. In comparison, our model employs a soft insolvency default trigger with the
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occurrence probability as a function of the distance-to-default measure, which has been shown to
be consistently and significantly related to likelihood of default. This becomes possible because we
explicitly model each bank’s assets and liabilities dynamics by introducing common risk factors.
Their natural dynamic evolutions in response to common risk factors and idiosyncratic shocks
provides an explicit and more realistic model of causes and reactions of a banking system.

While not squarely the focus of this paper, we note that several authors have explored the
existence of a post-liquidation equilibrium in a static setting; that is, to show that an initial shock
to a banking network can indeed be resolved through the balance sheets of the banks and there is
an end-state after all defaults have taken place. Eisenberg and Noe (2001) showed the existence of
such an equilibrium. Gourieroux, Heam and Monfort (2012) provided an extension and used it to
explore contagion risk.

In our framework, the balance sheet serves as the main channel by which banks may default
(or survive). The balance sheet may be weakened for several reasons. Losses occur as a result of
systematic or idiosyncratic shocks, or caused by a bank’s counterparties. A defaulting bank’s assets
are also subject to fire-sale discounts which may exacerbate the losses. This approach is generally
consistent with the literature, although we note that several other possible channels have also been
mentioned. Allen and Gale (2000) proposed a microeconomic approach that characterizes financial
crises as forced liquidation of assets due to excess liquidity demand by consumers. Rosenthal
(2011) viewed post-bankruptcy rehedging as a game, where some surviving banks may engage
in predatory actions and force others into bankruptcy. Nier, et al (2007) briefly described four
mechanisms by which multiple banks may fail: (1) direct bilateral exposures between banks, (2)
correlated exposures to a common source of risk, (3) feedback effects from endogenous fire-sale of
assets by distressed institutions, and (4) informational contagion. Roughly speaking, our approach
covers the first three described by Nier, et al (2007).

Due to their complexity, the systemic risk measures in our model can only be computed by
Monte Carlo simulations. In this regard, our model bears resemblance to that of Anand, et al
(2013), which sets up an extensive network involving domestic banks, international banks, and
corporate firms. They relied on some prescribed heuristics to model the contagion dynamics.
Because defaults in their model are not triggered by an explicit solvency condition, their model is
more of a reduced-form type as opposed to our structural approach. Another key difference is the
way that banks’ assets and liabilities are shocked. The model of Anand, et al (2013) does not allow
for dynamic behavior, whereas in our model the assets and liabilities follow stochastic processes and
are structured into systematic and idiosyncratic risk components. Cascading defaults in our model
can therefore be more meaningfully analyzed, and a clear separation of systematic and systemic
risks becomes possible.

Systemic risk would not become particularly interesting if we view it as unconditional expected
incremental losses due to interbank linkages. Because the likelihood of cascading defaults is sup-
posed to be quite low, any significant incremental losses in a crisis environment will be masked by
its small probability of occurrence, ex ante. A meaningful systemic risk measure should therefore

4



be expected losses conditional on some crisis scenario; for example, a stock market decline by 40%
or more over six months adopted by Brownlees and Engle (2012). Our estimation of systemic risk
critically needs an efficient simulation technique that can effectively conduct simulations of dy-
namic systems by concentrating on rare future events. For this, we devise a novel bridge-sampling
technique that can efficiently compute various quantities of interest in our model.

We demonstrate the use of our structural model with a network of 15 British banks that was
analyzed previously by Anand, et al (2013). The sample period is quarterly from Q1 of 2004 to
Q4 of 2012. Our data such as the implied asset value and distance-to-default are obtained from
the Credit Research Initiative database of the Risk Management Institute, National University of
Singapore. Due to data confidentiality, we do not know the actual interbank exposures of these
15 banks at different points of time over our sample period. But we are able to obtain from the
authors of Anand, et al (2013) the interbank exposures distribution of these banks and use that
distribution to generate interbank exposures.

Our measurement is responsive to the evolution of the credit crisis, peaking in 2008-2009 and
abating thereafter. This may have been brought about by the consolidation of banks’ capital
structure through a series of mergers and the UK bank rescue package.

A deeper analysis reveals two key findings. Firstly and as expected, we find that the level of
systematic risk (exposure or fraility) is directly and positively related to the performance of market-
wide risk factors. A large negative common shock is typically associated with large magnitudes
of systemic risk. More interestingly, we find that systemic risk becomes significant only when
systematic risk is large. In a hypothetical setting in which bank assets were driven purely by
idiosyncratic risk, systemic risk would be low. On the other hand, if bank assets move strongly
in the common direction, the impact of systemic risk is considerable. In principle, idiosyncratic
shocks may trigger cascading defaults, but shocks to systematic risk factors, as opposed to banks’
idiosyncratic elements, are more likely to drive cascading defaults and hence to cause higher systemic
risk. As expected, interbank losses do exhibit a decreasing relationship with the level of interbank
netting. Based on the British interbank exposure data available to us, however, interbank netting
does not significantly reduce systemic risk.

Finally, we consider marginal systemic risk measures which are computed as the increase in
systemic risk due to a particular bank between (i) using the true banking configuration and (ii)
employing a hypothetical banking configuration under which only this particular bank faces no
interbank exposures. “Interconnectedness” has been identified as a primary source of systemic
disruption, and our model is particularly apt, because this is measured directly. We show how
marginal systemic risk measures can be used to rank banks according to their individual contribu-
tions to systemic risk. Thus, our method can potentially identify systemically important financial
institutions (SIFIs), i.e., those which are either “too-big-to-fail” or “too-connected-to-fail”.
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2 Asset and liability dynamics before a bank default

Consider a banking network that comprises M banks. Denote the first time that a bank defaults
by τ1, the second by τ2, and so forth. The random times of bank default occurrences are increasing;
that is, 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τM . The exact default definition will be given in the next section.

Between two consecutive random default times τj and τj+1, the i -th bank that has survived
beyond τj is assumed to have the asset and liability dynamics: for τj ≤ t < τj+1 (τ0 = 0),

dVit
Vit−

= µidt+

K∑
k=1

βikdfkt + σidWit + Y
(c)
i dN

(c)
t + YidNit +

dLit
Vit−

(1)

dLit
Lit−

= ϕidt+
K∑
k=1

γikdfkt + νidBit. (2)

Common risk factors such as stock market index, interest rate, exchange rate and so on are
captured generically by fkt (k = 1, · · · ,K). The dynamics for three common risk factors (stock
market index, interest rate term spread and exchange rate) will be specified later when we implement
the model. Selecting interest rate, exchange rate and stock market index as common risk factors are
backed by well-established empirical findings. For example, Choi, Elyasiani and Kopecky (1992)
concluded that these three factors are statistically significant for banks. Flannery and James (1984)
found that the co-movement of stock returns and interest rate changes is positively related to the
size of the maturity difference between the firm’s nominal assets and liabilities, whereas Kwan
(1991) arrived at the same conclusion using an alternative specification. It should be noted that
we will use the LIBOR spread (12-month rate minus 1-month rate) as the interest rate factor in
the application to a British banking network later to better reflect the fact that the term spread
as opposed to the interest rate level serves as a better indicator of interest rate risk.

Wit is a Wiener process independent of all common risk factors, and it is used to reflect the
idiosyncratic risk that is unique to the i -th bank, i.e., also independent of the idiosyncratic shocks
facing other banks.

The operational/credit risk is captured by the two terms: Y
(c)
i dN

(c)
t and YidNit. The interbank

credit risk is excluded from this term because we will model it separately. We refer to these

two terms as common and idiosyncratic operational/credit risks. N
(c)
t and Nit are the Poisson

processes with intensity parameters λc and λi, respectively. These Poisson terms are well suited
for capturing low-frequency but high-impact operational/credit risk events. High-frequency, low-
impact operational/credit risks may be regarded as parts of the diffusive idiosyncratic risk term,
Wit described earlier.

N
(c)
t captures the common operational/credit risk event. Enron’s bankruptcy is a good example.

It generates direct loan losses to banks as well as creates subsequent ligation settlements between

6



Enron’s creditors and major international banks.2 A common operational/credit risk event need

not induce identical losses to different banks, and thus the loss percentage (Y
(c)
i ) is bank-specific.

In addition to common operational/credit risk, one can expect bank-specific risk events, which are
captured by Nit with the loss percentage being Yi in the event of its occurrence.3

Y
(c)
i and Yi are independent of each other and also independent of N

(c)
t and Nit, and they

follow some appropriate distributions. In the example provided later, we assume they are normally

distributed with means µ
(c)
Yi

and µYi and standard deviations σ
(c)
Yi

and σYi . Moreover, Nit, Yi and

Y
(c)
i are independent across banks.

A typical operational/credit risk event will bring down a bank’s asset value; that is, both Y
(c)
i

and Yi are to have negative means. However, they need not always take on negative values; for
example, an initial litigation loss estimate may be revised downward due to the emergence of new
and favorable information so that it is actually a positive operational risk event. Wahlen (1994),
for example, noted that bank managers include a discretionary component into loan loss provisions,
over and above expected future losses.

Together, the operational/credit risk dynamics is a sum of two compound Poisson processes
that are assumed to be independent of all other risk factors. Because the asset value process is
discontinuous, we need to use the left time limit of the value process, i.e., Vit− , to describe the asset
value dynamics.

We have incorporated the nominal-value liability process (Lit) into the asset value dynamic to
reflect the fact that an asset value change occurs due to two reasons: (1) the value of the assets in
place moves in response to changes in market conditions, and (2) the asset value’s increase/decrease
corresponds to a change in a bank’s deposits and/or other financing vehicles. The second dimen-
sion is often left out in the option-based credit and/or deposit insurance pricing models, because
liabilities have been typically treated as fixed over the horizon of interest. However, it is both
conceptually and practically important to let asset value reflect liability changes as in equation (1).
Otherwise, banks in the model would be more likely to default because it had failed to reflect a
simple accounting reality.

2The Enron accounting scandal began to unravel in late 2001 and only resolved in 2008. Financial institutions
were sued for helping to hide Enron’s true financial condition. Citigroup paid out US$2 billion to Enron investors
in 2005, and US$1.66 billion to the creditors of the bankrupt company in 2008. Similarly, Royal Bank of Scotland,
Deutsche Bank, J.P. Morgan Chase and CIBC paid settlements.

3Examples of idiosyncratic operational losses abound. Reuters reported on December 9, 2005 that Mizuho Finan-
cial Group of Japan lost an estimated US$224 million in a trader’s blunder by keying in a wrong order. In January
2008, Societe Generale lost EUR 4.9 billion due to fictitious trades done by a rouge trader. In September 2011, UBS
lost over US$2 billion to unauthorized trading in its Global Synthetic Equities Trading desk. Over April-May 2012,
JP Morgan suffered large trading losses from massive positions on CDS derivatives.
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3 Interbank credit links and cascading defaults

The extent to which interbank exposures result in higher systemic risk is the focus of our analysis.
These exposures can be a result of derivatives trades such as foreign currency forwards, non-
collateralized interbank lending and/or simple credit derivatives in reference to other entities. We
will use the term “nominal value” to denote the present value of an interbank claim under no
counterparty default. The i -th bank’s nominal claim against the j -th bank at time t is denoted by
πijt. By definition, its nominal-value liability to the j -th bank is πjit because it is Bank j ’s nominal
claim against Bank i. The overall interbank exposures are summarized in Πt, an M ×M matrix
with πijt being its (i,j )-th element. The diagonal elements of Πt are naturally zeros. The nominal
value of interbank exposures are contained in the bank’s assets Vit and liabilities Lit. A bank default
will result in adjustments to the assets and liabilities of other banks in the banking network. The
involuntary contraction of balance sheets for other banks is the main cause for cascading defaults.
The specific adjustments will be described in a following section.

One can model the evolution of interbank exposures directly by a system of stochastic processes.
To make the model more manageable, we choose to link them to the liability processes of the
respective banks. Specifically, we assume a fixed percentage of Bank i ’s liabilities is its obligation
to Bank j. We can express Πt using a constant M×M matrix Q in combination with a time-varying
Lt, a diagonal matrix with its elements being the total liabilities of different banks at time t. Let
qij be the (i,j )-th element of Q where qij is the fraction of Bank i ’s total liabilities being its specific
obligation to Bank j. Note that qii = 0. Thus, Πt = Q′Lt. We will refer to Q as the banking
network configuration matrix.

3.1 Bilateral netting reduces interbank exposures

Bilateral netting has often been discussed in the context of reducing counterparty exposures and
systemic risk. Bilateral netting takes two forms: payment netting and close-out netting. Payment
netting refers to offsetting of cash flows for regular settlements. We are interested in close-out
netting, which applies to transactions between a defaulting firm and non-defaulting firms. Close-
out netting terminates obligations with the defaulting party and combines the replacement values
of multiple transactions into a single net payable or receivable. Mengle (2010) reported in his
ISDA research paper that close-out netting reduced credit exposures by more than $500 billion
worldwide.4

The specifics of bilateral netting are as follows. Interbank exposures typically comprise multiple
transactions, some of which are payables and others receivables. Due to the nature of banking
business, two banks, say i and j, often have mutual interbank exposures, i.e., πijt > 0 and πjit > 0.
If either one defaults, the outcome depends on the enforceability of bilateral netting. In the worst
case, the judicial manager of the defaulting bank may cherry pick obligations in the sense that it
demands payments owed by other banks while it defaults on its own obligations (i.e. zero netting).

4OTC derivatives are typically operated under a bilateral netting master agreement entered into by two parties.
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With bilateral netting enforceable, however, both parties will first net out their mutual interbank
positions.

Generally, there are legal opinions validating the enforceability of bilateral netting in major
jurisdictions including the US and UK. However, bilateral netting has not been legally tested fully
in all jurisdictions, as there is the risk that in actual bankruptcy proceedings, the court may impose
stays in preference of third-party creditors’ interests, unbundle netted transactions, or impose claw-
backs. The Basel Accord provides a ballpark parameter of 60% for the extent of netting to be
recognized for regulatory capital purposes, and we will use this value in our later implementation.

It is important to note that close-out netting does not take effect until one bank defaults. Thus,
one cannot net out interbank positions prior to a default. Upon default, both defaulting and non-
defaulting banks must face asset-liability revisions. Let ψ represent the extent to which netting can
be recognized. As stated earlier, we will set ψ = 60% per the Basel Accord. When Bank i defaults,
its assets and liabilities are closed-out by the amount of ψmin(πijt, πjit) for Bank j (j 6= i), which
is a bank that has not yet defaulted, but bilateral netting clears out its counterparty exposure with
the defaulting bank. Bilateral netting poses to Bank j a net exposure of ωjit where

ωjit = πjit − ψmin(πijt, πjit) (3)

Bank j must then compete with other creditors for a share of the remaining assets of Bank i. Any
irrecoverable loss will be charged to Bank j ’s capital.

3.2 The bank default clearing process

Let Dit denote the default indicator process for Bank i with 1 implying default and 0 otherwise.
Obviously, Dit is a non-decreasing process. The default indicator process cannot, however, be
determined individually without being influenced by other banks in the banking network. In other
words, it is endogenous to a banking network.

Starting from time 0, the asset and liability evolve according to equations (1) and (2) until some
bank defaults. We define, for τj ≤ t,

V ∗it = Viτj +

∫ t

τj

Vis−

(
µids+

K∑
k=1

βikdfks + σidWis + Y
(c)
i dN (c)

s + YidNis

)
+L∗it − Liτj (4)

L∗it = Liτj +

∫ t

τj

Lis−

(
κids+

K∑
k=1

γikdfks + νidBis

)
(5)

Let τ0 = 0 and define τ1 = inf{0 ≤ t : ξit = 1 for some i}. The default probability of Bank

i at any time t is assumed to be a logistic function: P (ξit = 1|ξit− = 0) = eα0+α1h(Vit,Lit)

1+eα0+α1h(Vit,Lit)
, with

the logistic function relating the probability of default to its solvency condition, h(Vit, Lit). Lower
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assets or higher liabilities would increase the likelihood of default. In our implementation, we use a
distance-to-default (DTD) measure for h(Vit, Lit). Defaults in our model are thus mainly triggered
by insolvency but moderated by liquidity and other factors implicit in our later use of an empirically
estimated probability of default function to govern the endogenous default behavior. In short, we
have employed a soft insolvency default trigger as opposed to a hard one. The default indicator
process is defined by setting {Dit = 1 for t ≥ τ1} if Bank i is the one that defaults. If multiple
banks, say j banks, default at the same time, set τj = τj−1 = · · · = τ1.

A default will call for interbank clearing. Clearing may generate sufficient credit losses to
some other banks and drag them into defaults. Continuing from time τk−1, the asset and liability
dynamics evolve as in equations (4) and (5). Once an additional bank default occurs, i.e., at time
τk, one must make asset and liability adjustments to properly reflect the interbank credit losses.
This turns out to be a fixed-point problem that can be solved by an iterative scheme with a finite
number of iterations. Let 0 ≤ φj ≤ 1 be the bankruptcy cost adjustment factor which multiplies
the pre-bankruptcy asset value of Bank j to yield the post-bankruptcy value at the point of its
default. The following steps describe the asset and liability adjustments and the value assignments
for the default indicator processes:

1. Let L∗τk be the diagonal matrix with its i -th element being L∗iτk and compute Πτk = Q′L∗τk
with its (i,j )-th element being denoted by πijτk .

2. Start with D
(0)
iτk

= Diτk− , V
(1)
iτk

= V ∗iτk and L
(1)
iτk

= L∗iτk . Update the default indicator process
as well as the asset and liability values for the banks that have not yet defaulted up to the
l -th iteration; that is,

D
(l)
iτk

=

{
1 if D

(l−1)
iτk

= 1

0 otherwise
(6)

V̂
(l)
iτk

= max

0, V
(l)
iτk
− 1{D(l−1)

iτk
=0 & D

(l)
iτk

=1}

M∑
j 6=i

1{D(l−1)
jτk

=0}ψmin (πjiτk , πijτk)

 (7)

L̂
(l)
iτk

= L
(l)
iτk
− 1{D(l−1)

iτk
=0 & D

(l)
iτk

=1}

M∑
j 6=i

1{D(l−1)
jτk

=0}ψmin (πjiτk , πijτk) (8)

V̂
(l+1)
iτk

=


V

(l)
iτk
−
∑M

j 6=i 1{D(l−1)
jτk

=0 & D
(l)
jτk

=1}

[
πjiτk + ωijτk

(
1−

φj V̂
(l)
jτk

L̂
(l)
jτk

)]
if D

(l)
iτk

= 0

V̂
(l)
iτk

otherwise

(9)

V
(l+1)
iτk

= max
(

0, V̂
(l+1)
iτk

)
(10)

L
(l+1)
iτk

=

 L
(l)
iτk
−
∑M

j 6=i 1{D(l−1)
jτk

=0 & D
(l)
jτk

=1}πjiτk if D
(l)
iτk

= 0

L̂
(l)
iτk

otherwise
(11)

10



Note that Bank i ’s asset value loss due to Bank j ’s default (i 6= j) is ωijτk

(
1−

φj V̂
(l)
jτk

L̂
(l)
jτk

)
which

reflects its partial claim recovery from the post-bankruptcy asset value (after bilateral netting)
on a proportional basis. In addition, Bank i ’s assets and liabilities must be reduced by πjiτk
as a result of shrinking balance sheet due to Bank j ’s default. Since Bank i is a non-defaulting
party, this balance sheet adjustment should be treated on a full-recovery basis.

Repeat the above iterative system until convergence to a fixed-point. Set Diτk , Viτk and Liτk
equal to the fixed-point values.

3. Let n(τk) =
∑M

i=1Diτk , which is the number of defaulted banks up to and including time
τk. Note that τk is the time that a new round of bank defaults starts and previously k − 1
banks had already defaulted. In general, n(τk) ≥ k due to cascading defaults. If n(τk) > k,
set τn(τk) = τn(τk)−1 = · · · = τk to reflect multiple defaults at the same time point. Note
that in such a case, Viτn(τk)

= Viτn(τk)−1
= · · · = Viτk , Liτn(τk)

= Liτn(τk)−1
= · · · = Liτk and

Diτn(τk)
= Diτn(τk)−1

= · · · = Diτk because n(τk)− k + 1 banks end up defaulting at the same
time.

It should be noted that multiple banks may default concurrently even in the absence of any
interbank credit links. As emphasized earlier, that type of dependence may, however, just be a
reflection of the fact that bank assets and liabilities are all subject to the market-wide systematic
risk factors.

Cascading defaults are explicitly modelled via the iterative system in equations (6)-(11). Every
additional iteration (asset and liability value revision) may cause more defaults, which in turn calls
for another iteration and may then cause further defaults. The default indicator processes are
right-continuous stochastic processes. Dit (i = 1, · · · ,M) are clearly dependent default indicator
processes, since one bank’s asset and liability values depend on other bank defaults. A numerical
example of a system of five banks showing how cascading defaults take place (with and without
bilateral netting) is given in Appendix A.

4 Measures of systemic risk

Here, we re-emphasize the distinction between systemic and systematic risks. Market-wide risk
factors such as interest rates, exchange rates, broad-based stock market indices affect all banks’
assets and liabilities. The risks arise from these common risk factors are systematic in nature.
Common operational/credit risk events is another form of such systematic risk. Systematic risk
has much to do with the nature of a bank’s assets and liabilities but has little to do with how a
banking network is organized. Therefore, the effects of systematic and systemic risks may not be
empirically distinguishable unless a model such as ours is deployed.

Systemic risk strictly arises from how the interbank exposures are structured. In the current
context, systemic risk is the incremental risk that is attributable to the credit risk links in a banking
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network. In short, systematic risk may be a key driver of systemic risk, but it is not the systemic
risk, however.

Our model naturally lends itself to a variety of measures for systemic risk. We consider two
aspects of systemic risk that are particularly important in any crisis. Firstly, the magnitude of
systemic losses, or exposure. Secondly, the pervasiveness of systemic failure, or fragility.

4.1 Systemic exposure

The total uncovered loss from a banking network, over horizon [0, T ] and evaluated at time-0, may
be expressed as follows:

TL
(Q)
[0,T ] =

M∑
i=1

∫ T

0
e−

∫ t
0 rsds

(
L

(Q)
it − φiV

(Q)
it

)
dD

(Q)
it (12)

Recall that φi is the fire-sale discount factor which reflects the bankruptcy costs for Bank i.

Note that the total uncovered loss is measured with respect to the banking configuration Q,
as indicted by the superscript above. Clearly, a network where Q = 0 has no systemic exposure,
since there are no interbank links. Rather, the losses associated with a network of Q = 0 are solely
attributable to systematic and idiosyncratic risks.

Accordingly, the systemic exposure is measured by taking the incremental uncovered loss
due to the banking network Q against the benchmark network 0 that has no interbank linkages:

SystemicExp
(Q)
[0,T ](A) = E0

[
TL

(Q)
[0,T ] − TL

(0)
[0,T ]

∣∣∣A] (13)

where the systemic exposure is defined in terms of a conditioning event of interest, A, and a
time period of interest, [0, T ]. A stress event such as the stock market declining by at least 40%
over next six months was, for example, used by Brownlees and Engle (2012) as the conditioning
event. Naturally, few would worry about systemic upside risk corresponding to a booming market.
The same conditioning event has, for example, been built into the SRISK, which is produced by
a regularly updated operational system, pioneered by the Volatility Institute headed by Nobel
laureate Robert Engle in Sterns School of Business, New York University, to measure systemic
risks of financial institutions.

Next, in order to distinguish the impacts of systematic shocks from idiosyncratic shocks, we

define TL
(0,∗)
[0,T ] , the total loss in the setup where bank assets and liabilities are driven purely by

idiosyncratic risk but the total risk of an individual bank remains unchanged. The hypothetic
system of interest is:

dV ∗it
V ∗it−

= µ∗i dt+ σ∗i dWit +
dL∗it
V ∗it−

(14)

dL∗it
L∗it−

= ϕ∗i dt+ ν∗i dBit (15)
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where µ∗i , σ
∗
i , ϕ

∗
i , ν
∗
i are such that the total volatilities of

dV ∗it
V ∗it−

and
dL∗it
L∗it−

are the same as those of

the original dynamics where they are subject to systematic shocks characterized by common risk
factors.

We are now ready to define the systematic exposure where banks have no interbank links:

SystematicExp
(0)
[0,T ](A) = E0

[
TL

(0)
[0,T ] − TL

(0,∗)
[0,T ]

∣∣∣A] . (16)

Using the above hypothetical asset-liability system, we can also define the totally-idiosyncratic
exposure, meaning that this exposure is measured under the assumption that total asset risk is
converted into entirely idiosyncratic risk. In other words, the level of individual total asset risk
remains unchanged but a bank’s assets are no longer correlated with those of other banks.

T-IdiosyncraticExp
(0)
[0,T ](A) = E0

[
TL

(0,∗)
[0,T ]

∣∣∣A] . (17)

Since this quantity is measured using the null matrix of interbank links, it basically reflects the
system’s total exposure when there are no interbank exposures, bank assets are totally uncorrelated
with each other, and total volatilities of individual banks’ assets remain the same as the true system.

To assess the relative magnitude of the losses and facilitate the comparison across different
banking systems, one may normalize the systemic and systematic risk exposures against GDP or
aggregate banking capital.

By our definition above, systemic and systematic exposures need not be always positive, and
this feature is not too difficult to understand. One would expect systemic exposure to increase
with interbank linkages, and rightly so, since interbank exposures may cause some banks to default
earlier than otherwise would be. But early default may not actually incur higher losses for two
reasons. Firstly, an earlier default could face a higher recovery rate due to our use of a soft
insolvency default trigger (i.e., a technically solvent bank can still default) and a fixed fire-sale
discount factor (i.e., rising asset values make an early default experiencing a smaller dollar amount
of the fire-sale discount). Secondly, with interbank linkages, a default within the banking system
causes non-defaulting banks to mark down their assets and liabilities through the close-out netting
arrangement, and in a way forces loss realizations that are still properly covered.

Systematic exposure would be negative if a risk factor moves in favor of some banks. If, for
example, a bank has a negative correlation with the stock market index while other banks are
positively correlated. When the conditioning event is a 40% or more stock market decline over six
months, this bank will actually fare better under the market stress scenario, and hence help reduce
the banking system’s overall losses.

4.2 Systemic fragility

As an analogue to systemic exposure, systemic fragility measures the expected proportion of
banks which will default, again benchmarking against a banking configuration matrix, 0.
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SystemicFra
(Q)
[0,T ](A) = E0

[∑M
i=1

∫ T
0 dD

(Q)
is −

∑M
i=1

∫ T
0 dD

(0)
is

M

∣∣∣∣∣A
]
. (18)

Likewise, we can define systematic fragility as

SystematicFra
(0)
[0,T ](A) = E0

[∑M
i=1

∫ T
0 dD

(0)
is −

∑M
i=1

∫ T
0 dD

(0,∗)
is

M

∣∣∣∣∣A
]

(19)

where D
(0,∗)
is is the default indicator process generated by the hypothetical asset-liability processes

in equations (14) and (15). Naturally, we also define the totally-idiosyncratic fragility as

T-IdiosyncraticFra
(0)
[0,T ](A) = E0

[∑M
i=1

∫ T
0 dD

(0,∗)
is

M

∣∣∣∣∣A
]
. (20)

Note that systemic fragility measures how pervasive bank failures are expected to be, but it
does not actually reveal the severity of trouble for the banking system in terms of uncovered dollar
losses. Systemic exposure, on the hand, provides an assessment on the expected aggregate losses
to the banking system under stress.

For the same reason stated above, systematic fragility may also take negative values. However,
systemic fragility is expected to be non-negative.

5 Dynamic scenario analysis and stress-testing

The two systemic risk measures – systemic exposure and fragility – discussed in the preceding
section are based on some conditioning event, A. They in effect measure the resilience of a banking
system under a prescribed stress scenario. Thus, computing these measures is a kind of stress testing
much like what financial regulators normally conduct. Stress scenarios used in macro stress testing
are usually defined in terms of GDP, unemployment rate, etc., and are used to conduct “what-
if” scenario analysis. In this paper, however, we will focus on stress scenarios directly defined in
terms of the common risk factors that define the asset and liability dynamics. For example, we
follow Brownlees and Engle (2012) to consider the stress event that the stock market declines by
40% or more over next six months. Since common risk factors are expected to be correlated, we
must ensure our scenario analysis dynamically consistent among all common risk factors, which is
accomplished by devising a novel bridge-sampling procedure.

Our dynamic model allows stochastic variables to evolve according to the prescribed system
dynamics, taking into account the conditioning event. In this paper, we specify three market-wide
risk factors – interest rate term spread, equity market index and exchange rate. We would like to
condition a particular common risk factor to a prescribed shock over time, and evolve other risk
factors in a dynamically consistent way. For example, consider an event where the stock market
index falls at least 40% over a six-month period. Firstly, the fall is not static, which takes place over
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time in a random fashion. Secondly, the term spread and exchange rate, being correlated processes,
must also move in a correlated manner. Over many simulations, a wide variety of scenarios are
allowed to play out. This may capture important scenarios such as a confluence of events to which
the system is particularly vulnerable to. Our implementation makes use of a Gaussian bridge
sampler. The technical details for this bridge sampling implementation are provided in Appendix
B.

We assume that the interest rate term spread is governed by an Ornstein-Uhlenbeck process,
an assumption made popular by the term structure model of Vacicek (1977). In fact, the Vasicek
(1977) model implies that the term spread will also follow an Ornstein-Uhlenbeck process with
suitable changes to its parameters. The term spread dynamics is assumed to be

dRt = κ(R̄−Rt)dt+ ηRdWRt (21)

where κ is the mean reverting speed, R̄ is the long run average term spread and η is the term spread
volatility. We choose term spread instead of interest rate as one common risk factor because term
spread is likely to have more influence on bank’s assets and liabilities. Banking operations have
much to do with maturity transformation from short-term deposits to longer-term loans, and term
spread should therefore serve as a more direct driver in bank’s performance. Our British banking
sample seems to confirm this observation.

Other market risk factors may also affect bank’s asset/liability dynamics. The other two com-
mon risk factors considered in this paper are stock market index (It) and exchange rate (et). We
use the geometric Brownian motion to model both; that is,

d ln It = δIdt+ ηIdWIt (22)

d ln et = δedt+ ηedWet (23)

where WIt and Wet are correlated with ρIe being the correlation coefficient. The correlation coef-
ficients between WIt and WRt is denoted by ρIR. Similarly, ρeR denotes the correlation coefficient
between Wet and WRt. Although the three common risk factors are the same for the asset and
liability dynamics, they can be effectively different by setting some factor loadings to zero.

6 An example of the UK banking network

We choose to demonstrate the model using the UK banking system for several reasons. Firstly, we
are able to obtain its interbank exposures distribution. Secondly, the impact of the recent credit
crisis on the UK financial system was relatively severe. The UK government implemented bailout
packages in 2008 and 2009, and some UK banks had since been consolidated. Our systemic risk
measures should deliver a clearer message using this banking system. Lastly, bilateral netting is
permitted under English law, and an quantification of its benefit is in order.
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6.1 Implementation details

We compute systemic (and systematic) exposure and fragility quarterly from Q1 of 2004 to Q4 of
2012. Our implementation uses daily data from a one-year moving window to estimate the models
for the common risk factors and the UK bank asset-liability dynamics. Unless otherwise stated, we
assess systematic and systemic risk over a time horizon of six months and treat one year as having
250 time points (mimicking 250 trading days). Expectations are computed with 500,000 simulated
sample paths.

Mitchell and Pulvino (2011) found that certain assets traded at roughly 10% discount to their
fundamental values during the crisis.5 We thus adopt a fixed fire-sale discount factor of 0.9 for all
banks.

6.1.1 Interbank exposures and banks’ asset-liability dynamics

We consider a network of 15 UK banks, which includes all major ones. The distribution of interbank
exposures was provided by K. Anand and P. Gai, and the same data were used in Anand, et al
(2013). The summary statistics of one bank’s fractional claim on another bank’s liabilities are
provided in Table 1. As the identities are not known to us, we randomly assigned each bank to a
particular (unknown but unique) counterparty in the data. This assignment is done once so that
it is time consistent for each quarter where the systemic risk is being computed.

Table 1: Summary statistics of interbank claims

Mean Median StDev Min Max

To an individual bank 0.00376 0.0000463 0.00958 0 0.0579
Total claims of a bank 0.05258 0.0036960 0.07436 0 0.1788

In actual production, the network may be extended to a wider setting to include more firms.
However, in the UK alone, there are roughly 300 listed financial firms and it is necessary to select
a suitable subset that can adequately capture the risk. In this respect, Duffie (2011) described
a “10-by-10-by-10” approach which provides some interesting thoughts on identifying important
financial firms.

It is important to use the market value of assets, rather than book value, for assessing bank
default. Our calibration of bank asset dynamics is also based on market value. Daily market
values of assets for each bank are obtained from the Credit Research Initiative (CRI) database
administered by the Risk Management Institute (RMI), National University of Singapore. The
underlying method for estimating the market value of assets is based on the maximum likelihood
estimation (MLE) method proposed in Duan (1994, 2000) with modifications to accommodate

5The 10% discount was measured with respect to convertible debentures. We are not aware of any other more
appropriate fire sale discount factor for bank assets.
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financial firms as described in Duan and Wang (2012). This MLE method has the advantage of
factoring in a suitable fraction of other liabilities (total liabilities minus short-term and long-term
debts) into the parameter estimation.6 This is particularly important for financial firms such as
banks because they typically have sizeable customer deposits that are classified as neither short-
term nor long-term debt.

For the specific operational/credit risk, we use a common set of parameters for all banks, which
is based on broad approximates using Basel’s Results from the 2008 Loss Data Collection Exercise
for Operational Risk. The frequency of operational event is 8.9 per year, with each event incurring
an average loss of £32 and standard deviation of £250 per million of bank assets. Although this
operational/credit risk has been incorporated into our analysis, its effect is expectedly negligible as
compared to the impact of other factors.

Recall that we defined ξit such that P (ξit = 1|ξit− = 0) = eα0+α1h(Vit,Lit)

1+eα0+α1h(Vit,Lit)
, which is a logistic

function that relates a bank’s likelihood of default to its level of assets and liabilities. In this
example, a DTD measure is appropriate, given its statistically significant relationship with actual
defaults. Using the default history and DTD of all financial firms in Europe, our calibration using
monthly data (2004-2012) obtained from RMI yields α0 = −7.323 and α1 = −1.355, both are
strongly significant. This resulting default triggering function is applied to all simulations. In
order to keep track of DTDs during simulation, we initialize each bank with its actual DTD at the
start of each period where systemic risk is being measured, and update DTD as market value of
assets and liabilities change along each simulated sample path.

Note that there are two concepts of liabilities being used.7 The first pertains to the total
liabilities of the bank, as stated on its book. This is used for computing losses in the event of a
default, since it forces a resolution of all its liabilities. The second concept relates to “adjusted
liabilities”, commonly known as “default point”. This is used in DTD and assessing the likelihood
of default. As discussed above, the “adjusted liabilities” account more appropriately the role of
long-term and “other liabilities” in the default trigger. In short, our combined use is a simplified
way for dealing with complex liabilities of firms.

For this simulation, we do not dynamically evolve liabilities in response to common risk factors
over the course of six months, except when there is a default. When there is a default, adjusted
liabilities are assumed to be affected by the same proportion as book liabilities.

Where unavailable, “adjusted liabilities” had been supplemented by book values in the financial
statements. Where it is also missing, we use the closest year to initiate the asset-liability dynamics8.

6Alternative methods such as the well-known KMV methodology do not explicitly treat other liabilities which can
be problematic in application to financial firms.

7In some earlier versions of this paper, we used adjusted liabilities for both default trigger and settlement, which
resulted in lower systemic risk exposures.

8This only occurs occasionally for the small/unlisted banks.
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Figure 1: Parameter estimates for the FTSE 100 index

6.1.2 Common risk factors

The dynamic common risk factors are the daily UK FTSE 100 index, trade-weighted British pound
spot exchange index provided by Deutsche Bank, term spread between the 12-month and 1-month
GBP LIBOR. The model for these three common risk factors have been described earlier. In
addition, we add a common latent factor that does not have any time series dynamic. We add this
latent factor to better reflect the degree of commonality (systematic risk) among British banks.
This common latent factor is identified by applying a principal component analysis to the residuals
of the bank asset returns after taking out the effect of the three dynamic common risk factors. For
this analysis, we do not include common operational/credit events for the lack of comprehensive
data on this.

In general, bank assets respond positively to increases in the UK FTSE index and negatively
to a strengthening of the GBP. The response to interest rate term spread depends on the period in
question. We provide detailed summary statistics of the estimates for the banks’ factor loadings in
Table 2.

The parameters of the common factor dynamics for each year in the 2004-2012 period are
presented in Figures 1-3, and their numerical values are given in Table 4. The UK FTSE 100
index was generally drifting upwards from 2004 to 2007, but experienced downward drifts and high
volatility over 2008 to 2009, during the credit crisis. A similiar trend can be observed for the
GBP exchange rate. The GBP LIBOR interest rate term spread does not exhibit significant mean
reversion in the full sample, much less for the shorter time window of one year. For the purpose of
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Figure 2: Parameter estimates for the TWI GBP index

Figure 3: Parameter estimates for the GBP LIBOR 12m-1m term spread
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our empirical analysis, it is treated as a unit root process with no mean reversion, i.e. κ = 0. If so
desired, more refined modelling of the term spread is possible.

As the above three factors are not an exhaustive prescription of systematic risk, a common
latent factor was included to capture the remaining effects. The R2 of the bank assets against
the three market risk factors alone yield an R2 of 6% to 30%, while inclusion of the latent factor
captured 24% to 70% of the variation in terms of R2. Detailed summary statistics of the R2 are
provided in Table 5.

This latent factor is generated in a manner such that it is orthogonal to all dynamic common risk
factors, and captures the maximum remaining common variation possible. Firstly, all UK banks
are first subject to projection onto the three common dynamic risk factors. Then, the residuals
of all banks are taken together to extract one principal component. We assumed that the latent
factor followed geometric Brownian motion.

If, in any given year, the bank had insufficient data to compute its factor loadings, we used the
average of all other banks with available data.

6.1.3 Conditioning event

The conditioning event in our implementation is that the UK stock market falls by at least 40%
over a period of six months, similar to that prescribed in Brownlees and Engle (2012). Historically,
a 40% drop in the FTSE 100 index did occur over the 2008-2009 period. It should be noted that
our method is flexible enough to accommodate other conditioning events.

6.2 Time profile of total losses due to interbank linkages

Figure 4 shows the expected proportion of bank defaults (subject to the conditioning event) over
the 2004-2012 period, broken down in systemic fragility and other components. Likewise, Figure
5 below shows our estimate of expected total uncovered losses broken down to systemic exposure
and other components.9

Our measurement is responsive to the period of actual crisis in 2008-2009, where the overall risk
spiked. It was at this point where systematic risk was high, accompanied by significant systemic
risk. In periods of low systematic risk, systemic risk was low accordingly.10 We will explore the
driving relationship between systematic risk and systemic risk more in a later section.

The overall risk abated partially in late 2009 and more significantly thereafter in 2010. A
possible factor for this could be consolidation of banks’ capital structure through a series of mergers.

9These results are different from earlier versions of this paper. We had previously computed losses based on
“adjusted liabilities” instead of total book liabilities. This issue was discussed in Section 6.1.1.

10Systematic fragility and exposure were slightly negative in 2005-Q4. One particular bank’s (Northern Rock)
assets were negatively correlated with the FTSE 100 Index, meaning that a 40% down in the FTSE 100 Index would
drive its asset value up and hence avoid default.
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Figure 4: Time profile of systemic fragility

Figure 5: Time profile of systemic exposure
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Banco Santander acquired both Bradford-Bingley and Alliance-Leicester, and HBOS-Lloyds and
Britannia-Cooperative also merged. In addition, the UK government announced a bank rescue
package.11 Together, these actions could have improved the general capital standing of the banks.12

6.3 Dynamic common risk factors and systematic risk

Systematic risk (exposure or fragility) is directly and positively related with the market-wide com-
mon risk factors. This is intuitive: if the shocks are larger, banks’ balance sheets suffer more from
the impact, and their likelihood of default increases. To demonstrate this effect, we use the year
ending 2009-Q4 as the basis for our comparison. We prescribe a range of conditional shocks on the
equity index, of up to 40%. Figures 6 and 7 provide the result.

In the unconditional case, no shock is prescribed to the system, and the index is free to move
up and down according to the system’s dynamics. Hence, systematic risk (exposure or fragility)
is almost zero. While banks may be correlated in their movements with the equity index, this
does not translate to systematic risk per se, since the market may move up or down. In fact, if
the market does sufficiently well, and bank assets are all positively correlated with the market, we
would expect “negative systematic risk”. Hence, a sufficiently large negative shock needs to be
present in order to have a meaningful analysis of systematic risk.

When we restrict the event to a fall in index, that is a shock of at least 0%, the systematic
effect begins to become apparent, and it grows as we strengthen the shock up to -40% of the equity
index. Since bank assets are positively correlated with the equity index, they all fall together with
it. A large fall decreases DTD significantly, leading to more defaults and higher systematic risk
(exposure or fragility).

6.4 Systematic risk as a driver of systemic risk

Systematic risk should be thought of as a driver for systemic risk. Without common movements
in banks’ assets, it is difficult to contemplate multiple banks going into default at the same time.
When systematic risk is zero, we expect systemic risk to also be close to zero. It is unlikely that
idiosyncratic risk can cause a huge systemic effect.

Again using the year ending 2009-Q4 as the basis for our comparison, we analyze the sensitivity
of systemic risk to the level of systematic vis-a-vis idiosyncratic risk. To conduct this analysis,
we first determine the total variability in assets for each bank based on equation (1). The bank
coefficients to the market risk factors and the Brownian motion are then scaled in a manner that
attributes the desired proportion of risk to idiosyncratic and systematic components. We then
subject the system to the same 40% down stress event and analyze the systemic effect.

11£500 billion bank rescue package, of which £50 billion comprised state investments in banks.
12Note that the effect of recapitalization and merger cannot be immediately reflected in our results, because

the resulting balance sheet does not immediately become available. For quarterly (semiannual) release of financial
statements, the delay can be up to three (six) months. For UK banks, most of the balance sheet data are based on
semiannual statements. Quarterly financial statements are available for some banks in the later periods.
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Figure 6: Stock market shock and impact on systematic fragility

Figure 7: Stock market shock and impact on systematic exposure
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Figure 8: Systematic Risk as a Driver for Systemic Fragility

Figure 9: Systematic Risk as a Driver for Systemic Exposure
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Figure 10: Effect of bilateral netting on systemic fragility

Figure 8 shows the systemic fragility in relation to the proportion of systematic risk present
in the system (the total risk remains unchanged). At the point where bank assets respond only
to idiosyncratic risk, systemic fragility is relatively low. As we introduce systematic effects into
the system, banks become vulnerable simultaneously, and the risk of cascading defaults rises, as
reflected in higher systemic fragility. This confirms our understanding that in principle, idiosyn-
cratic shocks may trigger cascading defaults, but shocks to systematic risk factors, as opposed to
banks’ idiosyncratic elements, are more likely to drive cascading defaults and hence to cause higher
systemic risk. The same conclusion holds true for systemic exposure as reflected in Figure 9.

6.5 Bilateral netting

In this section, we assess the effect of bilateral netting on systemic risk. Figures 10 and 11 show
the systemic fragility and systemic exposure at different levels of netting. Based on the interbank
exposure data available to us, interbank netting does not reduce systemic risk significantly. Both
systemic fragility and systemic exposure are fairly invariant to the level of netting assumed. However
and as expected, interbank losses shown in Figure 12 exhibited a decreasing relationship with the
netting level.

We limit our conclusion of the weak effect of bilateral netting to the on-balance sheet interbank
exposures between 2004-2007, which were made available to us. If off-balance sheet data were
accessible, and prove to be large, the findings may be different.
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Figure 11: Effect of bilateral netting on systemic exposure

Figure 12: Effect of bilateral netting on interbank losses
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7 Determining SIFIs

The 2008-09 global financial crisis has put a spotlight on financial institutions which are “too-big-
to-fail” or “too-connected-to-fail”, i.e., their failures might cause severe disruption to the overall
financial system. New regulations proposed by authorities worldwide are in part aimed at control-
ling the magnitude of this problem. A key challenge has been to identify systemically important
financial institutions (SIFIs). In this section, we present a methodology for ranking banks in terms
of their marginal contributions to the overall systemic risk.

The FSB describes SIFIs as “financial institutions whose distress or disorderly failure, because
of their size, complexity and systemic interconnectedness, would cause significant disruption to
the wider financial system and economic activity.” Our model is particularly suited for ranking
banks by systemic importance, as it takes into account several important factors. Firstly, “systemic
interconnectedness” is captured by our banking configuration matrix Q, which describes the extent
of exposures between banks. A large bank with significant levels of interbank exposures would
be more likely to cause a cascade of defaults and disrupt the financial system, thereby leading to
a high systemic fragility and systemic exposure. Secondly, the size of a bank and its ability to
absorb losses are captured by the market value of assets Vit and liabilities Lit. Indeed, the FSB
has identified loss absorption capacity as a means to combat “too-big-to-fail” and banks’ capital
requirements have been increased under Basel III.

Importantly, our model is informative on the impact of a failure, and not only the risk of a
failure. We note that the Basel Committee “is of the view that global systemic importance should
be measured in terms of the impact that a failure of a bank can have on the global financial system
and wider economy rather than the risk that a failure can occur.”

To aid in ranking systemically important banks, we introduce the concept of marginal sys-
temic fragility and marginal systemic exposure. For Bank i, let Q−i represents the banking
configuration matrix Q with its ith row and column replaced by a vector of zeros, i.e. Bank i along
has no interbank exposures. The marginal systemic fragility and exposure for Bank i are defined
as:

MargSystemicFra
(Q,i)
[0,T ] (A) = E0

[∑M
i=1

∫ T
0 dD

(Q)
is −

∑M
i=1

∫ T
0 dD

(Q−i)
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M

∣∣∣∣∣A
]
. (24)

MargSystemicExp
(Q,i)
[0,T ] (A) = E0

[
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(Q)
[0,T ] − TL

(Q−i)
[0,T ]

∣∣∣A] (25)

The marginal systemic fragility represents the increase in expected bank default rate as a result
of Bank i’s interbank exposures, all others being held constant. The marginal systemic fragility
of a particular bank should be assessed and ranked in relation to that of all other banks. If a
bank introduces a significant level of systemic fragility to the network as compared to other banks,
it should be deemed to be systemically important. The marginal systemic exposure provides a
complementary measure in this regard, representing the total uncovered losses introduced by Bank
i, instead of expected rate.
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Figure 13: Ranking by marginal systemic fragility

Figures (13) and (14) provide an example of rankings by systemic importance based on marginal
systemic fragility and marginal systemic exposure, respectively. The figures present the results in
Q4 of 2009 for the 11 banks (out of the original sample of 15 banks) still standing at the time. We
emphasize that this is merely an example, the goal here is to demonstrate the methodology. As
we do not know the identities of individual interbank exposures for our sample of 11 British banks
then, we have simply applied the average interbank exposure for all banks in these graphs. In
other words, the results in these figures reflect more of the characteristics of banks’ balance sheets
and the risk profiles of their assets. Use of actual interbank exposure data, which naturally reside
with banking supervisors and central banks, will no doubt make the results more informative and
relevant.

8 Conclusion

We introduce a structural model by which systemic, systematic and idiosyncratic risks may be
separately identified and measured. Formally distinguishing the first two beyond just concepts and
providing with explicit risk measurements are to our knowledge the first in the literature.

Two useful measures are proposed: systemic exposure and systemic fragility. These measures
reflect the expected losses due to interbank linkages, and the latter measures the pervasiveness of
bank defaults, conditional upon an appropriate stress event. Both of which are highly tied to the
presence of systematic risk reflected in common dynamic risk factors. A novel bridge sampling
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Figure 14: Ranking by marginal systemic exposure

technique is specifically designed for computing these two systemic measures by simulating the
common risk factors under stress.

Through our explicit structural model of cascading defaults, we characterize systematic risk as
the driver of systemic risk. In a banking system where there are no systematic effects, systemic
risk is extremely low, because idiosyncratic risks are not able to drive multiple defaults. However,
when systematic risks are introduced, banks suffer concurrently from a market impact and the risk
of cascading defaults increases.

Under benign conditions, the systematic risk of the UK banking system empirically studied in
this paper is close to zero, but increases in magnitude together with the stress in the UK stock
market. Using actual data on a network of 15 UK banks over the period of 2004-2012, we find that
our two measures of systemic risk are responsive to actual periods of the crisis around 2008.

Finally, we define marginal systemic fragility and marginal exposure, which measure the increase
in potential disruption that a particular bank brings to the overall financial system. We expect
both measures to be informative for identifying systemically important banks.
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Appendix A: Cascading defaults – a numerical example

We use a numerical example to demonstrate cascading defaults with and without bilateral
netting. For this example, we use a 5-bank network configuration matrix as follows:

Q =


0 0.15 0.15 0.10 0.10

0.08 0 0.12 0.20 0.10
0.18 0.02 0 0.15 0.15
0.05 0.15 0.12 0 0.18
0.20 0.10 0.20 0 0

 . (26)

According to the above network configuration matrix, 50% (sum of the first row) of Bank 1’s total
liabilities is owed to its interbank counterparties. Similar calculations apply to other banks. The
above matrix is made to have the same row sum of 50% but to differ in their distributions over
banks. Further assume

Lt =


200 0 0 0 0
0 200 0 0 0
0 0 100 0 0
0 0 0 300 0
0 0 0 0 100

 . (27)

Thus,

Πt =


0 16 18 15 20
30 0 2 45 10
30 24 0 36 20
20 40 15 0 0
20 20 15 54 0

 . (28)

The above matrix implies that Bank 1 has a nominal claim against Bank 2 in the amount of $16
while at the same has a nominal liability of $30 to Bank 2.

The bankruptcy cost factor is assumed to be 0.8 for all banks. We assume that a bank default
occurs with the following asset and liability values:

Bank 1 Bank 2 Bank 3 Bank 4 Bank 5
Asset value: 225 195 120 305 115

Liability value: 200 200 100 300 100
Default indicator: 0 1 0 0 0

Note that the assumed liability values are the same as the ones used in obtaining equation (28).

To present a simpler illustration in this example, we will use a hard insolvency default trigger,
i.e., a bank defaults when its asset value falls below the level of its nominal liabilities. Elsewhere
in this paper, the soft insolvency default trigger defined by a logistic function described in section
3.2 is used.
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Since Bank 2’s asset value falls below its liabilities, it has to default. Bank 2’s default hence
causes all other banks to revise their asset and liability values.

A1. Cascading defaults without bilateral netting

First iteration:

Bank 1 Bank 2 Bank 3 Bank 4 Bank 5
Asset value: 191.48 195 112.72 251.2 100.6

Liability value: 170 200 98 255 90
Default indicator: 0 1 0 1 0

Bank 1 revises its liability down by 30 because π21 = 30 as specified in equation (11). Note that ψ
is set to zero because of no netting, and thus ωij = πij . Its asset value goes down by 33.52 because

π21 + π12

(
1− φ2V2

L2

)
= 30 + 16 ×

(
1− 0.8×195

200

)
= 33.52 as specified in equation (10). Similar

calculations apply to Banks 3-5. As shown in the table, the asset and liability revisions due to
Bank 2’s default triggers Bank 4’s default, which calls for further asset and liability revisions.

Second iteration:

Bank 1 Bank 2 Bank 3 Bank 4 Bank 5
Asset value: 168.30 195 90.09 251.2 89.16

Liability value: 150 200 83 255 90
Default indicator: 0 1 0 1 1

Bank 4’s default forces Bank 1’s liability downward by 20 because π41 = 20. Bank 1’s asset value

goes down by 23.18 because π41 + π14

(
1− φ4V4

L4

)
= 20 + 15 ×

(
1− 0.8×251.2

255

)
= 23.18. Similar

calculations apply to Banks 3 and 5. This time, the asset and liability revisions due to Bank 4’s
default triggers Bank 5’s default, which calls for further asset and liability revisions.

Third iteration:

Bank 1 Bank 2 Bank 3 Bank 4 Bank 5
Asset value: 144.15 195 70.94 251.2 89.16

Liability value: 130 200 68 255 90
Default indicator: 0 1 0 1 1

Bank 5’s default forces Bank 1 to again revise its liability downward by 20 because π51 = 20. Bank

1’s asset value needs to go down by 24.15 because π51 +π15

(
1− φ5V5

L5

)
= 20+20×

(
1− 0.8×89.16

90

)
=

24.15. Similar calculations apply to Bank 3. In this case, the asset and liability revisions due to
Bank 5’s default stop triggering any further default. Thus, the fixed point has been reached.
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A2. Cascading defaults with full bilateral netting

Under full bilateral netting (i.e., ψ = 1), the fact that Bank 2 has defaulted brings us to that
situation that Bank 2 has no obligation to Bank 1 but has claim against Bank 1 in the amount of
$14. Bank 2, however, owes Bank 3 a net amount of 22 for which Bank 3 can only hope for a partial
recovery. Similar reasoning applies to other banks. Full netting forces Bank 2’s assets and liability
to go down prior to settling other debts. The amount equals 68 (i.e., 16 + 2 + 40 + 10 = 68). The
net exposures that other banks face are in column 2 of the following matrix:

Ωt =


0 0 0 0 0
14 0 0 5 0
12 22 0 21 5
5 0 0 0 0
0 10 0 54 0

 . (29)

First iteration:

Bank 1 Bank 2 Bank 3 Bank 4 Bank 5
Asset value: 195 127 112.93 260 102.7

Liability value: 170 132 98 255 90
Default indicator: 0 1 0 0 0

Bank 1 revises its liability down by 30 because π21 = 30 as specified in equation (11). Its asset

value goes down by 30 because π21 + ω12

(
1− φ2V̂2

L̂2

)
= 30 + 0 ×

(
1− 0.8×127

132

)
= 30 as specified in

equation (10). Similar calculations apply to Banks 3-5. Clearly, the asset and liability revisions
due to Bank 2’s default have not triggered further defaults. The fixed point is reached after one
iteration. In contrast to the case without bilateral netting, cascading defaults do not take place in
this particular case.

Appendix B: Event-based conditional sampling

The conditional sampling schemes for the three common dynamic risk factors – term spread,
equity market index and exchange rate – are based on Gaussain bridge sampling and the specifics
are described in B1 and B2. Our bridge sampling scheme is based on the Euler approximation of the
three common risk factors’ dynamics. Note that we are actually able to derive the exact discrete-
time distribution for all three risk factors and thus perform the bridge sampling without the Euler
approximation. Using the approximated version is to be consistent with our sampling procedure
for the asset and volatility dynamics. For daily sampling (250 trading days a year) employed in
this paper, sampling with or without the Euler approximation makes no material difference.
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B1. Conditioning on an term spread event

Since the term spread process is Gaussian, we only need to know three quantities for constructing
a bridge sampler.

Et(Rt+k∆t) = R̄
[
1− (1− κ∆t)k

]
+ (1− κ∆t)kRt

V art(Rt+k∆t) =
η2∆t

[
1− (1− κ∆t)2k

]
1− (1− κ∆t)2

Covt(Rt+k∆t, Rt+(k+m)∆t) =
η2∆t(1− κ∆t)m

[
1− (1− κ∆t)2k

]
1− (1− κ∆t)2

The bridge sampler will be based on the following regression for 0 ≤ i ≤ k:

Rt+i∆t = ak,i(Rt) + bk,iRt+k∆t + εk,i

where

bk,i =
(1− κ∆t)k−i

[
1− (1− κ∆t)2i

]
1− (1− κ∆t)2k

ak,i(Rt) = R̄
[
1− (1− κ∆t)i

]
+ (1− κ∆t)iRt − bk,i

{
R̄
[
1− (1− κ∆t)k

]
+ (1− κ∆t)kRt

}
.

Moreover, εk,i is a normal random variable with mean 0 and variance equal to

V ar(εk,i) =
η2∆t

[
1− (1− κ∆t)2i

] [
1− (1− κ∆t)2(k−i)]

[1− (1− κ∆t)2] [1− (1− κ∆t)2k]
.

As an example, we want sample the term spread paths over k periods that always originate
from Rt and end with an Rt+k∆t ≥ Rt + 0.05. We first sample Rt+k∆t that is greater than or equal
to Rt + 0.05 using a truncated normal random variable sampler. Note that the mean and variance
of Rt+k∆t conditional on the time-t information are given above. Corresponding to a simulated
value of Rt+k∆t, we generate Rt+(k−i)∆t using the regression equation for i = k − 1, k − 2, · · · , 1.
This path thus begins at Rt and ends at an Rt+k∆t ≥ Rt + 0.05. Repeat the process to obtain as
many paths as desired.

Based on the simulated term spread path, we need to sample the corresponding stock market
index and exchange rate paths. Because their innovations are correlated with the term spread
innovation, we need to derive the conditional processes and they are

d ln It = δIdt+ ηIdWIt

= δIdt+ ηIρIRdWRt + ηI

√
1− ρ2

IRdZIt

d ln et = δedt+ ηedWet

= δedt+ ηeρeRdWRt + ηe

√
1− ρ2

eRdZet
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where ZIt and Zet are two Wiener processes independent ofWRt. The correlation coefficient between
ZIt and Zet is ρIe−ρIRρeR√

(1−ρ2IR)(1−ρ2eR)
if ρIR 6= 1 and ρeR 6= 1. Otherwise, the results are trivial. Note that

dWRt in the above equations can be computed from the simulated term spread path. The remaining

random components in the asset and liability dynamics are independent of these three common
dynamic risk factors. One can therefore simulate them easily and construct the corresponding asset
and liability dynamics.

B2. Conditioning on an equity market or exchange rate event

The sampling scheme can be applied to either stock market index or exchange rate. We will describe
the bridge sampling scheme using stock market index. Since ln It is Gaussian, we only need to know
three quantities for constructing a bridge sampler.

Et(ln It+k∆t) = ln It + δIk∆t

V art(ln It+k∆t) = η2
Ik∆t

Covt(ln It+k∆t, ln It+(k+m)∆t) = η2
Ik∆t

The bridge sampler will be based on the following regression for 0 ≤ i ≤ k:

ln It+i∆t = ck,i ln It + dk,i ln It+k∆t + ςk,i

where dk,i = i
k and ck,i = k−i

k . Moreover, ςk,i is a normal random variable with mean 0 and variance

equal to i(k−i)
k η2

I∆t.

Suppose that we want sample the stock market index paths over k periods that see an index
level drop by more than 25%, i.e., the process originates from It and ends at It+k∆t ≤ 0.75It. We
first sample ln It+k∆t that is less than or equal to ln It + ln 0.75 using a truncated normal random
variable sampler. Corresponding to a simulated value of ln It+k∆t, we generate ln It+(k−i)∆t using
the regression equation for i = k − 1, k − 2, · · · , 1. This path thus begins at It and ends at an
It+k∆t ≤ 0.75It. Repeat the process to obtain as many paths as desired.

Based on the simulated stock market index path, we need to sample the corresponding term
spread and exchange rate paths. We need to derive the conditional processes and they are

dRt = κ(R̄−Rt)dt+ ηRdWRt

= κ(R̄−Rt)dt+ ηRρIRdWIt + ηR

√
1− ρ2

IRdYRt

d ln et = δedt+ ηedWet

= δedt+ ηeρIedWIt + ηe

√
1− ρ2

IedYet

where YRt and Yet are two Wiener processes independent of WIt. The correlation coefficient between
YRt and Yet is ρeR−ρIRρIe√

(1−ρ2IR)(1−ρ2Ie)
if ρIR 6= 1 and ρIe 6= 1. Otherwise, the results are trivial. Note that

dWIt in the above equations can be computed from the simulated stock index path.
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The remaining random components in the asset and liability dynamics are independent of these
three common dynamic risk factors. One can therefore simulate them easily and construct the
corresponding asset and liability dynamics.
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Table 4: Parameter estimates for the common risk factors
Quarter UKX Drift UKX Volatility FX Drift FX Volatility IR Spread Volatility

2004-Q1 0.19 0.14 0.072 0.064 0.0058
2004-Q2 0.10 0.11 0.043 0.063 0.0057
2004-Q3 0.11 0.11 0.036 0.060 0.0051
2004-Q4 0.07 0.10 0.009 0.061 0.0046
2005-Q1 0.10 0.09 -0.016 0.056 0.0042
2005-Q2 0.12 0.09 -0.006 0.050 0.0037
2005-Q3 0.17 0.08 -0.001 0.049 0.0036
2005-Q4 0.15 0.09 -0.003 0.048 0.0036
2006-Q1 0.19 0.09 -0.028 0.048 0.0036
2006-Q2 0.13 0.12 -0.024 0.047 0.0035
2006-Q3 0.08 0.13 0.013 0.044 0.0032
2006-Q4 0.09 0.13 0.041 0.040 0.0031
2007-Q1 0.04 0.13 0.044 0.044 0.0032
2007-Q2 0.12 0.11 0.052 0.043 0.0033
2007-Q3 0.07 0.15 0.003 0.045 0.0040
2007-Q4 0.04 0.17 -0.064 0.055 0.0077
2008-Q1 -0.10 0.22 -0.127 0.063 0.0081
2008-Q2 -0.16 0.23 -0.128 0.070 0.0084
2008-Q3 -0.38 0.24 -0.132 0.073 0.0081
2008-Q4 -0.48 0.36 -0.283 0.110 0.0051
2009-Q1 -0.47 0.37 -0.195 0.134 0.0043
2009-Q2 -0.36 0.38 -0.113 0.140 0.0032
2009-Q3 0.06 0.36 -0.142 0.142 0.0029
2009-Q4 0.21 0.23 0.096 0.120 0.0014
2010-Q1 0.41 0.18 0.036 0.090 0.0009
2010-Q2 0.13 0.18 -0.027 0.084 0.0009
2010-Q3 0.07 0.18 0.008 0.081 0.0005
2010-Q4 0.09 0.17 -0.004 0.078 0.0004
2011-Q1 0.05 0.18 0.010 0.077 0.0004
2011-Q2 0.20 0.15 -0.057 0.074 0.0004
2011-Q3 -0.08 0.19 0.004 0.072 0.0004
2011-Q4 -0.06 0.21 0.025 0.070 0.0004
2012-Q1 -0.02 0.21 0.035 0.065 0.0003
2012-Q2 -0.06 0.22 0.060 0.059 0.0006
2012-Q3 0.11 0.17 0.055 0.054 0.0008
2012-Q4 0.07 0.14 0.023 0.047 0.0008
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Table 5: R2 of the banks’ asset value processes with a latent factor

R2 Inc Latent Factor R2 Exc Latent Factor

Quarter Mean Median StDev Min Max Mean Median StDev Min Max
2004-Q1 0.361 0.337 0.237 0.071 0.940 0.124 0.129 0.071 0.032 0.271
2004-Q2 0.342 0.255 0.254 0.095 0.974 0.183 0.180 0.090 0.068 0.352
2004-Q3 0.479 0.463 0.183 0.116 0.803 0.179 0.198 0.100 0.039 0.351
2004-Q4 0.483 0.486 0.169 0.118 0.730 0.193 0.238 0.113 0.008 0.351
2005-Q1 0.680 0.808 0.304 0.061 0.896 0.141 0.142 0.072 0.011 0.257
2005-Q2 0.703 0.847 0.307 0.055 0.914 0.113 0.115 0.051 0.011 0.178
2005-Q3 0.249 0.165 0.290 0.050 1.000 0.078 0.078 0.039 0.022 0.129
2005-Q4 0.242 0.145 0.290 0.071 1.000 0.059 0.059 0.026 0.024 0.105
2006-Q1 0.259 0.162 0.287 0.080 1.000 0.078 0.091 0.039 0.020 0.122
2006-Q2 0.326 0.275 0.266 0.090 1.000 0.146 0.177 0.070 0.028 0.239
2006-Q3 0.353 0.274 0.265 0.108 1.000 0.192 0.225 0.088 0.027 0.295
2006-Q4 0.384 0.298 0.254 0.126 1.000 0.219 0.248 0.096 0.025 0.335
2007-Q1 0.420 0.344 0.233 0.246 1.000 0.211 0.221 0.085 0.020 0.303
2007-Q2 0.431 0.376 0.226 0.252 1.000 0.199 0.213 0.077 0.019 0.292
2007-Q3 0.517 0.481 0.195 0.269 0.944 0.264 0.264 0.068 0.141 0.364
2007-Q4 0.480 0.448 0.210 0.244 0.993 0.301 0.328 0.092 0.154 0.448
2008-Q1 0.501 0.477 0.218 0.250 0.996 0.206 0.184 0.083 0.083 0.358
2008-Q2 0.443 0.414 0.242 0.177 0.915 0.191 0.154 0.078 0.090 0.344
2008-Q3 0.537 0.465 0.297 0.115 0.996 0.168 0.193 0.123 0.016 0.359
2008-Q4 0.494 0.423 0.221 0.154 0.890 0.160 0.137 0.119 0.014 0.357
2009-Q1 0.524 0.439 0.263 0.189 0.996 0.153 0.126 0.157 0.017 0.460
2009-Q2 0.554 0.466 0.282 0.187 0.995 0.156 0.126 0.152 0.021 0.482
2009-Q3 0.537 0.467 0.272 0.152 0.848 0.236 0.088 0.265 0.021 0.739
2009-Q4 0.448 0.402 0.260 0.119 0.864 0.174 0.171 0.135 0.012 0.352
2010-Q1 0.522 0.390 0.263 0.297 0.855 0.139 0.082 0.113 0.051 0.305
2010-Q2 0.527 0.358 0.261 0.327 0.867 0.175 0.104 0.136 0.053 0.336
2010-Q3 0.467 0.457 0.264 0.246 0.892 0.202 0.227 0.121 0.058 0.366
2010-Q4 0.435 0.407 0.326 0.151 0.960 0.175 0.147 0.077 0.119 0.308
2011-Q1 0.414 0.376 0.340 0.107 0.959 0.141 0.105 0.069 0.090 0.258
2011-Q2 0.377 0.317 0.367 0.057 0.967 0.090 0.073 0.047 0.057 0.172
2011-Q3 0.351 0.227 0.365 0.131 1.000 0.144 0.151 0.064 0.049 0.227
2011-Q4 0.617 0.750 0.326 0.099 0.929 0.172 0.172 0.069 0.083 0.274
2012-Q1 0.560 0.657 0.274 0.091 0.780 0.167 0.152 0.064 0.090 0.262
2012-Q2 0.475 0.501 0.292 0.076 0.839 0.144 0.151 0.053 0.075 0.202
2012-Q3 0.486 0.410 0.326 0.064 0.929 0.126 0.135 0.051 0.063 0.186
2012-Q4 0.498 0.400 0.289 0.272 0.969 0.126 0.141 0.058 0.041 0.196
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