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Abstract

Monte Carlo simulations are commonly used for valuing derivative securities, par-
ticularly for the contracts with a high degree of path dependency. The Monte Carlo
method is, however, known to be computationally intensive. Accelerating the Monte
Carlo method has thus long become an issue of significant academic interest and of great
practical relevance. In this article a combination of two existing ways of accelerating
simulation is proposed. Incorporating the recently developed empirical martingale ad-
justment into the increasingly popular quasi-Monte Carlo simulation (also known as

the low-discrepancy simulation) is found to deliver by far the best performance.
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1 Introduction

Many derivative securities exhibit some degree of path dependency. The financial market
abounds with such contracts; for example, Asian options, lookback options, knock-in and
-out options, collateralized mortgage obligations, among many others. This type of path
dependency is created by contract specifications which explicitly call for the payout to be a
function of the past prices of the underlying instrument. To value a derivative security, one
also needs to make a choice of pricing framework. The adopted framework may rely on a
price dynamic that is highly path dependent. The increasingly popular GARCH model is
one such example. Since path dependency arises from the underlying asset price, it therefore
stays with us regardless of whether the derivative contract is path dependent or not. In short,
path dependency is often intrinsic to the tasks facing analysts. Some of path dependency
can be simplified and dealt with in the lattice or other numerical valuation frameworks.
Inevitably, there are valuation problems with a high degree of path dependency, and the

Monte Carlo method becomes the method of last resort.

Using Monte Carlo simulations to value derivatives is not without problems. The method
can be computationally demanding if a reasonably high level of pricing accuracy is required.
This is, of course, due to the well-known fact that the rate of convergence for a Monte Carlo
estimate is proportional to the inverse of the square root of the number of simulated sample
paths. In other words, reducing the standard error of a Monte Carlo estimate by a factor
of two requires the number of sample paths to increase by a factor of four. There are many
well-known methods for error reduction, including antithetic simulation, control variate sim-
ulation and importance sampling simulation. Recently, Duan and Simonato (1998) proposed
a simulation adjustment method which takes advantage of an inherent property of the asset
price dynamic. Since the asset price is supposed to be a (semi-) martingale under the risk-
neutralized pricing measure, their method sets out to incorporate this theoretical feature
into the simulation algorithm. A multiplicative adjustment was used by them to ensure
the martingale property in simulation. They demonstrated that the empirical martingale
simulation (EMS) substantially accelerates the convergence of Monte Carlo price estimates.

A more drastic departure from the Monte Carlo tradition is the adoption of quasi-Monte



Carlo simulation method for pricing derivatives; for example, Brotherton-Ratcliffe (1994),
Paskov and Traub (1995), Joy, Boyle and Tan (1996). The quasi-Monte Carlo method is
also known as the low-discrepancy simulation. The idea is to generate a sequence of finite-
dimensional, say k-dimensional, vectors that fill the k-dimensional hypercube more evenly
(or having a lower discrepancy) than the k-dimensional uniformly distributed independent
random vectors. Many sequences are known to possess such a property, and they are com-
monly referred to as low-discrepancy numbers. If a low-discrepancy sequence is used, in
stead of the standard uniformly distributed random numbers, in evaluating a derivative se-

curity (technically, computing an integral), the rate of convergence has been shown to be

in the order of (Inn)*/n where n is the number of sample paths. In comparison to 1/v/n,
the rate of convergence for the standard Monte Carlo, it is clear that the low-discrepancy
simulation method asymptotically dominates regardless of how large is k. In practice, how-
ever, the numerical performance of the quasi-Monte Carlo method is greatly affected by the
dimensionality of the problem. If £ is large but n is not large enough, the quasi-Monte Carlo
method may perform poorly.

In this article, we propose a marriage of the EMS and the quasi-Monte Carlo simulation
as a way of accelerating Monte Carlo convergence. Using the EMS or quasi-Monte Carlo
simulation individually yields a substantial gain in computational efficiency. Combining these
two methods together generates a measurable improvement over their individual applications.
We carry out a trade-off analysis using a randomly generated test pool of one thousand Asian
options. Our results confirm that this new way of approaching derivatives valuation is indeed

promising.

2 The empirical martingale quasi-Monte Carlo simu-
lation
To facilitate the discussion of our proposed empirical martingale quasi-Monte Carlo (EMQMC)

simulation, we provide below a brief review of the EMS and the quasi-Monte Carlo simula-~

tion. We first discuss the EMS and then move on to the quasi-Monte Carlo simulation.



The EMS is based on an observation that a general feature shared by all derivatives
pricing models is the martingale property. A good simulation method should therefore
reproduce such a property for the simulated sample if possible. The martingale property for
derivatives pricing essentially states that the discounted asset price must be a martingale
under the risk-neutralized pricing system. In other words, the discounted average future
asset price under the risk-neutralized probability measure should equal its current value.

This statement can be formalized as follows:
e "E? [S,|Fo) = So, (1)

where S, denotes the current stock price, r the risk free interest rate, Fy the information
known at time 0 and E®(-|F,) the conditional expectation operator in a risk-neutralized
economy. For typical Monte Carlo simulations, the martingale condition stated in (1) almost
certainly fails for any finite simulated sample. For a simulated sample of size n, the Monte

Carlo estimate for e "' E? [S;|F] is
> S, (2)

where gi,t is the i-th simulated value for time ¢. But, S, will be different from its theoretical
value Sy with probability one. The difference is the so-called “simulation error,” which
decreases if the sample size is increased.

Duan and Simonato (1998) had come up with a multiplicative adjustment to ensure that
the martingale property is respected in simulation. For the following discussion, we use
a geometric Brownian motion asset price dynamic to describe their empirical martingale
adjustment. For a more general exposition, readers are referred to Duan and Simonato

(1998). In a standard Monte Carlo simulation, the i-th sample path is generated using:
Sio =95 and S;; = Spexp <(r — 7)75 + Ue“ﬂ) (3)

where 7 is the risk free rate, o the asset volatility rate, and ¢;; the i-th element of a sequence
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of independent and identically distributed standard normal random numbers. The empirical

martingale adjustment modifies the simulated sample paths as follows:

-~

Si
Si = Soexp(rt) Tn—’tg’ (4)
n =1 M1t

The above adjustment is essentially a multiplication by the ratio of the expected time-t stock
price, Sy exp(rt), over the average obtained from the simulated sample, % > §” This ratio
is expected to be very close to one if the simulation sample is large. It can be easily verified
that the adjusted stock price satisfies exp(—rt)+ 3" Sf, = So. This in turn implies that
the simulated sample after the multiplicative adjustment satisfies the martingale property
stipulated by the pricing theory.

To understand the quasi-Monte Carlo simulation method, one must first comprehend the
notion of discrepancy of a sequence. We will skip a formal definition of discrepancy and opt
for a more intuitive understanding instead. A two-dimensional example should suffice for
such a purpose. Consider a square defined by [0, 1] x [0, 1] and a sequence of two dimensional
vectors of numbers with each entry taken from [0, 1]. In a nutshell, discrepancy measures the
maximum absolute difference between the size of the area defined by the subset [0, z] X [0, y],
where = and y are arbitrary but must be confined to [0, 1], and the percentage of the points
from this sequence falling inside this subset, after reaching, say n. If the discrepancy goes to
zero when n goes to infinity, the sequence is uniformly distributed. The rate of convergence
to zero varies among different uniformly distributed sequences, however. The independent
and identically distributed uniform random numbers actually have a discrepancy in the order
of 1/4/n. Interestingly, this order of convergence has nothing to do with the dimension of the
vectors in the sequence, and the dimension only affects the convergence constant. There are
many sequences known to have a smaller discrepancy; for example, Sobol, Faure and Halton
sequences. These sequences have a discrepancy in the order of (Inn)*/n, which depends on
k, the dimension of the vectors in the sequence. This property suggests that for an extremely
large n, the low-discrepancy sequence is certain to be more uniformly distributed than the

independent, identically distributed uniform random sequence. How large is considered



large? The answer depends on the value of k, the dimension of the vector. If k is large, then
(Inn)* /n may still be greater than 1/y/n for fairly large n, which implies that up to this
particular sample size, the low-discrepancy sequence is still less uniformly distributed.

The quasi-Monte Carlo method replaces the independent and identically distributed uni-
form random numbers by a low-discrepancy sequence. The discrepancy of a sequence and
the pricing error for derivatives is linked together by the Koksma-Hlawka inequality, which
states that the quasi-Monte Carlo pricing error is bounded by a value that is proportional to
the discrepancy of the uniformly distributed sequence employed. It is therefore evident that
the use of a low-discrepancy sequence will asymptotically dominate the use of the indepen-
dent and identically distributed uniform random numbers. Indeed, several applications in
finance such as Brotherton-Ratcliffe (1994), Paskov and Traub (1995), Joy, Boyle and Tan
(1996) have confirmed this theoretical prediction.

The practical relevance of asymptotic dominance is quite a different matter, however.
When a problem has a large dimension k£ and the sample size n is restricted by comput-
ing considerations, the relative merit between two types of sequences become murky. Our
proposed EMQMC simulation is designed for such a situation.

What is the EMQMC simulation? It is simply the empirical martingale simulation de-
scribed in (3) and (4) with ¢;; being generated by a low-discrepancy sequence instead of
the independent and identically distributed uniform random numbers. Since €;; is supposed
to be normally distributed, we need to transform the low-discrepancy uniformly distributed
sequence into a normally distributed sequence. We use the algorithm proposed by Moro

(1995) to perform this transformation.

3 A performance analysis

How does the EMQMC perform numerically? The answer to this question lies with a nu-
merical performance analysis. The trade-off relationship between the pricing accuracy and
computing time determines the relative performance of the competing methods. The trade-

off relationship is established using a test pool of Asian options whose payout is based on the



path average of the underlying asset prices over the entire life of the option contract. The
choice of the type of options in the test pool is dictated by two factors. First, we want the
options to be path dependent. Second, there must be a closed-form solution to facilitate the
checking of pricing accuracy. As a result, we choose to use Asian options with the payout
based on a discretely sampled geometric average of the prices over the contract life. The
valuation framework is the Black and Scholes (1973) geometric Brownian motion setup. This
combination allows us to use the analytical formula established by Turnbull and Wakeman
(1991) as the benchmark.

The frequency of discrete sampling in the payout calculation determines the dimension
of the simulation problem; for example, a daily sampling of prices for an option with a six
month to maturity is equivalent to having an approximate dimension of 180. In terms of
our notation, £ = 180. As our earlier discussion revealed, a higher dimension is likely to
impede the performance of the quasi-Monte Carlo simulation. We assume for simplicity that
the path average is calculated on a weekly sampling basis. A similar analysis can be easily
conducted for different frequencies.

Our test pool of options is constructed in a spirit similar to Broadie and Detemple (1996).
A test pool of 1,000 Asian options is created using a random selection of parameters based on
pre-determined distributions. The following distributions are used for the parameter values:
the volatility rate ¢ is distributed uniformly between 0.1 and 0.6; the maturity 7" is also
distributed uniformly between 0.1 and 1 year; the initial stock price Sy = 100; the exercise
price K is uniform between 70 and 130; the risk-free rate of interest r is, with probability
0.8, uniform between 0 and 0.1, and with probability 0.2, equal to 0. Each parameter value
is drawn independently of the others.

For each simulation method, we record the total computing time and an aggregate mea-
sure of pricing errors for the test pool of options. The computing time is measured by the
average time (in seconds) taken to complete the calculations for the test pool using the

matrix programming language Matlab and a standard desk-top computer. The aggregate



pricing error measure is the root mean squared error:
1 2

where e;(n) = |Ci(n) — Ci|/C; with C; the i**analytical price and C;(n) is the i estimated
option price using one of the Monte Carlo methods with n sample paths. The variable m
stands for the size of the test pool, and it is set equal to 1,000. We eliminate the cases that
C; < 0.50 to avoid large relative errors caused by a small divider. We control the test pool
to be the same for different Monte Carlo methods using common random numbers. In the
Monte Carlo calculation of option prices, different simulation methods also share a common
set of random numbers. For each value of n, we produce a pair — the computing time and
the relative pricing error to study the trade-off.

We examine the time-pricing accuracy trade-off for four different simulation methods.
The straightforward Monte Carlo simulation is referred to as the crude Monte Carlo simu-
lation. We also consider the EMS method and the quasi-Monte Carlo simulations with and
without the empirical martingale adjustment. The specific low-discrepancy sequence used
in the quasi-Monte Carlo simulation is the Sobol sequence. The uniform Sobol numbers are
generated using the program FINDER, a software developed at Colombia University.

Figure 1 is generated by varying the value of n from 1,000 to 20,000 with an increment
of 1,000. Since the horizontal axis is the time used and the vertical axis the aggregate
measure of pricing errors, a better method should lead to a trade-off relationship that is
closer to the origin of the graph. As the results indicate, the crude Monte Carlo is easily
dominated by either the EMS or the quasi-Monte Carlo method (labeled as Sobol). The
EMQMC method (labeled as Sobol-EMS) outperforms all other simulations methods. The
efficiency gain by incorporating the EMS adjustment into the quasi-Monte Carlo method
is quite pronounced when the time allocated for calculations is small. The gain becomes
marginal when more computing time is used to reduce pricing errors. In the above analysis,
the time taken to generate the Sobol numbers and transform them into normally distributed

ones is not included in the average time spent. Since Sobol numbers are not random, we
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have first stored them in memory to avoid repeatedly generating them. FExcluding their
computing time is thus more in line with the actual scenario in applications.

Figure 2 plots the aggregate pricing error as a function of the number of sample paths
used. Although a larger number of sample paths certainly increases the computing time for
a given simulation method, it need not represent a one-to-one relationship to the computing
time when comparing across different simulation methods. This graph depicts the number
of sample paths needed to achieve a given level of pricing precision; for example, to achieve a
RMS of 0.03, approximately 2,000 samples paths are needed using the EMQMC simulation
method. Using the quasi-Monte Carlo method without the empirical martingale adjustment
would require approximately 4,000 sample paths. The results have a similar meaning as
those in Figure 1. For a given level of pricing accuracy, the EMQMC method does best. The
empirical martingale adjustment improves the quasi-Monte Carlo method measurably when
the sample size is small. In a way, the EMQMC method has the best of two worlds. It has
taken advantage of the asymptotic dominance of the quasi-Monte Carlo simulation, and it
is at the same time greatly enhanced by the empirical martingale adjustment.

Our results will, of course, be affected by the dimension of the valuation problem. If we
change the discrete sampling from weekly to daily, the dimension £ increases substantially.
According to the order of convergence described earlier, this change is likely to yield an
outcome that is even more in favor of making the EMS adjustment to the quasi-Monte Carlo

method.

4 Conclusion

We have proposed a straightforward marriage of two established simulation enhancement
methods. The quasi-Monte Carlo simulation is known to deliver an excellent performance
when the sample size is large, but the method’s performance can be questionable when the
path dependency (dimension) is high and the sample size is not very large. Since the sample
size is not expected to be very large for many day-to-day applications, the quasi-Monte
Carlo method is thus not all that desirable from a practical standpoint. We have shown

in this article that the quasi-Monte Carlo simulation method can be greatly enhanced by



incorporating the empirical martingale adjustment. This combination results in a simple

simulation method that effectively turbo-charges Monte Carlo simulations.
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Figure 1: Computational efficiency of Monte Carlo methods
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Figure 2: Trade-off between pricing accuracy and sample size
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