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Abstract

Volatility smile refers to the convex pattern in the Black-Scholes implied volatility when plot-
ted against the option’s exercise price. This paper provides a theoretical analysis of volatility
smile using a generalized GARCH option pricing model in which the asset return innovation is
conditionally leptokurtic and skewed. This generalization accommodates the empirical evidence
on conditional leptokurtosis and also allows for other features of financial data such as long
memory in volatility. Our analysis using this generalized GARCH option pricing model sug-
gests that conditional leptokurtosis, leverage effect and asset risk premium together determine
the shape of the volatility smile.
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1 Introduction

The seminal work of Black and Scholes (1973) and Merton (1973) on option pricing theory, com-
monly known as the Black and Scholes model, has not only spawned a huge literature on derivative
contracts but also transformed the business practice in the financial industry. This influential option
pricing model is not without problems, however. Many empirical studies, including the empirical
work in Black and Scholes (1972), have shown that the Black and Scholes model exhibits system-
atic pricing biases. More recent empirical studies typically focus on the pricing biases in terms of
implied volatilities, and the bias phenomenon is referred to as “volatility smile.” Volatility smile
pertains to the phenomenon that the Black-Scholes implied volatilities for stock call options often
exhibit a downward sloping, convex pattern when plotted against their exercise prices.! This per-
sistent feature of option price data contradicts the prediction of the Black-Scholes model, because
the theory suggests a horizontal line for the implied volatility. The volatility smile phenomenon
motivated many extensions of the Black and Scholes model.?

Duan (1995) proposed a different approach to extending the Black-Scholes model, in which the
underlying asset return is assumed to follow the GARCH dynamic. The ARCH family of models
was first introduced by Engle (1982), and the most notable generalization was by Bollerslev (1986).
The generalized ARCH (GARCH) model has in the recent years gained prominence for modeling
financial time series. Financial data typically exhibit time-varying volatility, which has particularly
important implications for pricing derivative contracts. Since derivative claims are sensitive to
volatility, it is of paramount importance to use a good model for the volatility dynamics of financial
assets. The derivation of the GARCH option pricing model in Duan (1995) utilizes the standard
competitive equilibrium asset pricing framework. Recently, Kallsen and Taqqu (1998) have come
up with a continuous-time version of the model so that an arbitrage-free argument can be used to
establish the same pricing result. The numerical methods for this class of option pricing models
have been emerging; for example, Hanke (1997), Duan, et al (1998), Ritchken and Trevor (1998),
Duan and Simonato (1998a&b), and Heston and Nandi (1998). The GARCH option pricing model
has so far experienced some empirical successes: see, for example, Amin and Ng (1994), Heynen,
et al (1994), Duan (1996a), and Heston and Nandi (1998).

One of the key assumptions for the GARCH option pricing model is conditional normality. This
assumption is needed to ensure a distributional invariance when the asset return innovation under-
goes risk neutralization. This assumption is, however, at odds with the direct empirical evidence
on the asset return dynamic as summarized, for example, in Bollerslev, et al (1992). A typical
finding concerning the return characteristics is that one-period asset return, conditional on the
most up-to-date information, continues to exhibit a fat-tail behavior. This fat-tail phenomenon is
sometimes referred to as conditional leptokurtosis. This evidence raises a question concerning the
appropriateness of the conditional normality assumption. Since the current GARCH option pricing
theory does not permit conditional leptokurtosis, it is unclear as to what effects conditional lep-

I The volatility smile phenomenon is also present in currency option markets. Although the curve is still convex,
it sometimes slopes upwards or has no skew at all.

%See, for example, the earlier papers by Cox (1975), Merton (1976), Geske (1979), Rubinstein (1983), and more
recent ones by Hull and White (1987), Johnson and Shanno (1987), Scott (1987), Wiggins (1987), Melino and Turnbull
(1990), Stein and Stein (1991), Madan and Milne (1991) and Heston (1993), and many others.



tokurtosis could have on volatility smile. This paper generalizes the GARCH option pricing model
by specifically allowing the asset return to have a conditionally fat-tailed and skewed distribution.
The generalized option pricing theory is then used to study the effect of conditional leptokurtosis
on volatility smile.

Empirical evidence in the literature has recently been emerging to indicate a long memory prop-
erty in the volatility dynamics. This long memory phenomenon was reported, for example, in Ding,
et al (1993). Recently, long memory in volatility has been modeled as a fractionally differenced
system, which allows volatility innovation to die out at a hyperbolic, instead of exponential rate?
Crouhy and Rockinger (1997) recently recognized that the hysteresis effect is also present in the
conditional volatility of asset return. They proposed the use of a GARCH model with hysteresis
effect to describe asset returns. Our generalization of the GARCH option pricing theory incorpo-
rates these two features of financial data. More importantly, our generalization encompasses any
imaginable parametric form of the GARCH dynamic.

Our strategy for developing the generalized version of the GARCH option pricing model begins
with a search for a transformation that is capable of converting the fat-tailed and/or skewed ran-
dom variables into normally distributed ones. Applying the local risk-neutral valuation principle
to these transformed variables, we have effectively generalized Duan’s (1995) model. We also adopt
the general error function as the conditional distribution function to demonstrate the effect of con-
ditional leptokurtosis. The numerical analysis is carried out by varying the tail-fatness parameter
of the generalized error distribution. The results suggest that the shape of volatility smile is jointly
determined by the extent of conditional tail-fatness, the degree of leverage effect and the magnitude
of asset risk premium. Our findings also offer several interesting theoretical predictions useful for
future empirical studies.

2 Local risk neutralization under conditionally fat-tailed and skewed
distributions

This section provides a development of the option pricing theory for the GARCH model with non-
normally distributed innovations. Consider an asset in a discrete-time economy with price at time
t denoted by X; and dividend yield from time (¢ — 1) to ¢ by d;. The one-period one plus the rate
of return for this asset, i.e., X)’gl +d¢41, is assumed to obey, under the data generating probability

measure P, the following dynamic:

X
B( )21 +dir1;0) = per + Vi€ (1)
hivi = f(hr,er;—00 <71 <1t,0) (2)
et1lFr ~ D(0,1) (3)
20 —1
B(z;6) = 5 for 2> 0and 6 >0 (4)

®See, for example, Baillie, et al (1996), Bollerslev and Mikkelsen (1996) and McCurdy and Michaud (1996).



where F; is the information set containing all information up to and including time ¢. In equations,
D(0,1) denotes some distribution function that is continuous over its support with mean 0 and
variance 1, where the support is assumed to be a connected set. (D(a) will sometimes be used to
denote the cumulative distribution function evaluated at a). The set of parameters, , governs the
volatility dynamic. The conditional mean, t; 11, is any predictable process which means measurable
with respect to the information set F;. The conditional variance, hsy1, is by definition measurable
with respect to the information set F;. Finally, § is restricted to take on values that ensure a finite

conditional second moment for X)’gl + di11 under measure P.
B(+; 6) is the well-known Box-Cox transformation so that B(X;gl +di11;0) = ln(X;gl +di41) and
B(XLer +diiq;1) = Xep1—Xs 4+ d;11. The model in (1)-(4) describes the continuously compounded
Xt + Xt + y

return when ¢ = 0, and describes the simple rate of return when § = 1. The value of § cannot
be arbitrary, however. If, for example, ,,1 has a conditionally fat-tailed distribution such as the
t-distribution, then 6 cannot equal zero because this combination makes the expected simple rate
of return unbounded ( clearly not a sensible situation). Note that § should not be viewed as an
unknown parameter; rather it is a modeling choice made by the user.

Our general specification allows the asset return innovation to have a conditionally fat-tailed
and skewed distribution. This feature is important because mounting empirical evidence has indi-
cated that high frequency data continues to exhibit conditional tail-fatness after allowing for the
GARCH effect (see Bollerslev, et al, 1992). Conditional leptokurtosis was directly modeled as a
t-distribution in Bollerslev (1987). Alternatively, the generalized error distribution can be used to
model conditional leptokurtosis as in Nelson (1991).

It is quite common in the literature to adopt a special functional form for f(-). In the case of the
non-linear asymmetric GARCH(1,1) model of Engle and Ng (1993), k11 = 8o+ 1+ Bohi (e — )%
If we let ¢ = 0, the model becomes the linear GARCH(1,1) of Bollerslev (1986) and Taylor (1986).
To obtain the exponential GARCH(1,1) model of Nelson (1991), one specifies i1 = exp{fo +
Biln(hy) + Ba(let] +er)}. For the version of GARCH model proposed by Glosten, et al (1993), one
simply specifies hey1 = Bo + Gr1he + ﬁghté‘% + B3hy max(0, —6t)2. More general GARCH models such
as Higgins and Bera (1992), Hentschel (1995) and Duan (1997) are also special cases of the general
dynamic in (1)-(4).

The volatility dynamic in (2) also includes the long memory model of Baillie, et al (1996). To
obtain their FIGARCH(1,d,1) model, we specify hy1 = Bo+01hy+[1—1 L—(1—0L)(1— L)% hy 11674
with L denoting the lag operator and where 0 < d < 1. The long memory models of Bollerslev
and Mikkelsen (1996) and McCurdy and Michaud (1996) are also special cases of the general
volatility dynamic. The GARCH model with hysteresis effect proposed by Crouhy and Rockinger
(1997) can be captured by the dynamic in (2). A simple version of the NGARCH with hysteresis
can, for example, be formulated as hiy1 = By + Bihe + Bohi(er — c1)? + (B3X{er>cat—kri<r<t} +
64X{67<02,t*k+1§7§t})(Zi:tfkﬂrl er — keg)? where X{} denotes the indicator function.

The GARCH option pricing model as derived in Duan (1995) critically relies on the assumption
that the asset returns exhibit conditionally lognormal distributions (or conditional normality for
the continuously compounded return).* With conditionally leptokurtic asset return innovations,

4Kallsen and Taqqu (1998) connected the discrete-time GARCH process by many geometric Brownian motion



one seems to need an entirely different approach to option pricing. The key to our derivation in this
paper is to recognize that the approach of Duan (1995) remains essentially valid when conditional
normality is restored by transformation.

Let ¢(-) denote the standard normal distribution function. A one-to-one transformation can
be designed in such a way that it converts &; to a standard normal random variable.> The desired
transformation is given in the following proposition.

Proposition 1. (Conditional normality by transformation)

U(e) = ¢ '[D(ed)] (5)
is, conditional on F;_1, a standard normal random variable with respect to measure P.

Since the proof for Proposition 1 is fairly intuitive, we skip the formal proof and instead provide a
sketch of the idea. The idea resembles the process of generating normal random numbers. Standard
normal random numbers can be generated by plugging uniformly distributed random numbers into
the inverse of the standard normal distribution function. Since &; has a continuous distribution over
its connected support, D(g;) must be a P-uniform random variable with support [0,1]. Inverting
the uniformly distributed random variable, D(e;), by the standard normal distribution function
thus creates a P-standard normal random variable. The transformation in (5) is a one-to-one
relationship because of the monotonicity of ¢(-) and the distributional assumptions for &;.

In the continuous-time complete market option pricing literature, the pricing measure is ob-
tained by the use of the Girsanov theorem and by the assumption of continuous trading (see, for
example, Harrison and Pliska, 1981). In the discrete-time GARCH framework, Duan (1995) char-
acterized the conditions under which the equilibrium price measure can be regarded as a locally
risk-neutralized probability. Following the approach of Duan (1995), we modify the local risk-
neutral valuation principle to suit the current setting of conditional non-normality. We consider
two arbitrary finite integer time points #; and ¢, such that ¢; < ,. These two finite time points
are used to ensure the existence of the locally risk-neutralized pricing measure. Since they are
arbitrary, any option pricing horizon of interest can be covered by a suitable choice of t; and t,,.

Let U(Ct) and Cy denote the strictly increasing utility function of the representative agent and
the aggregate consumption at time ¢, respectively, in a time separable and additive exchange econ-
omy. The impatience factor is denoted by parameter p. The standard expected utility maximization
argument leads to the following Euler equation:

!
Wi, = Ep[ep%(wt —+ Dt)|ft_1], (6)
for any traded financial asset whose price and dividend at time ¢ are denoted by W; and D;. To
ensure that existence of the expectation the price and dividend corresponding to the asset and the

processes. More specifically, the price dynamic between any two adjacent discrete time points is a constant volatility
diffusion. The one-period asset return in their model is thus conditionally lognormally distributed. Amin and Ng
(1994) directly assumed a jointly lognormal conditional distribution for the asset return and state price. Their
approach clearly precludes conditional leptokurtosis.

"Thanks to Ronald Gallant for pointing out such a transformation.



marginal rate of substitution are required to have finite second moments, conditional on 73, and
under measure P. We are now ready to define the equilibrium pricing measure.

Proposition 2. (Equilibrium (or locally risk-neutralized) pricing measure)

Define a measure ) over the time interval [t;,t,] as

ty

dQ = exp|—p(ty, — t;) + Z (re—1,s +1n
S:tl+1

U'(Cs)
———2)|dP. 7
U/(Cs—l) )] ’ ( )
where 7 ;11 denotes the one-period risk-free interest rate (continuously compounded) at time
t. Then, measure () satisfies two conditions:

(i) @ is a probability measure;

(ii) for t; +1 < t < t,, consider any traded asset whose time-t price is denoted by W; and

dividend at time ¢ by Dy. Tf EP{(W; + Dy)|F,} < oo and EX{(g75-25)?|Fi,} < oo, then

its time-(¢ — 1) price equals
I/Vt—l = e_Tt—l,tEQ {(VVt + Dt)|f;t71} . (8)

The equilibrium pricing measure is equivalent to the notion of the Arrow-Debreu state price
density, although the market analyzed in this paper is inherently incomplete. In a complete-market
setup, the specific form of the utility function is not important because the traded asset prices are
sufficient for identifying the state price density. In our setup, however, one must rely on further
assumption on preferences and aggregate consumption to characterize the pricing system. Here,
we generalize the local risk-neutral valuation principle established in Duan (1995).

Definition. (Generalized local risk-neutral valuation relationship, GLRNVR)

The equilibrium pricing measure @), defined over [t;, 1], is said to satisfy the generalized local
risk-neutral valuation relationship (GLRNVR) if, for t; < ¢ < t, — 1,

(i) measure () is mutually absolutely continuous with respect to measure P;

(i) there exists a predictable process A such that ¥(e¢y1)+ Aet1, conditional on F, is a standard
normal random variable with respect to measure @);

(1)) B +dya |} = explri).

The first condition is due to a technical requirement that two probability measures agree on
the events of measure zero. The second condition states that risk-neutralization has an invariance
property which means that the nature of the distribution for the transformed innovation remains
unchanged. Risk neutralization merely causes the transformed innovation to undergo a shift in
mean. The magnitude of mean shift, i.e., A\, is determined by the third condition. The precise
expression of A\; depends on the transformation W(-), which in turn is determined by the specific



distribution adopted for D(0,1). Mean shift is the standard result in option pricing when the
conditional distribution is normal. For the familiar diffusion model, the innovation is driven by a
Wiener process with locally normal distributions. The risk neutralization for that class of models
is typically carried out by absorbing the risk premium into the innovation term. The standard
martingale pricing result then suggests that the newly formed innovation term is again a Wiener
process (relative to the martingale measure) by the Girsanov theorem. Our condition is hence
similar to the standard result except that the absorption is carried out only after transforming the
innovation term into a standard normal random variable.

One may argue that the GLRNVR is a sensible generalization of the traditional risk-neutral
valuation concept because the definition has an intuitive appeal on its own. We choose instead to
provide a classical equilibrium justification to the GLRNVR in the following proposition.

Proposition 3. (Sufficient conditions for the GLRNVR)

If the representative agent is an expected utility maximizer and the utility function is time
separable and additive, then the GLRNVR holds under any of the following three conditions:

(i) the utility function is of constant relative risk aversion and changes in the logarithmic ag-
gregate consumption, i.e., (InCy —In Cy_1), and the transformed asset return innovation, i.e.,
U(et), follow a P-bivariate normal distribution, conditional on F;_1;

(ii) the utility function is of constant absolute risk aversion and changes in the aggregate con-
sumption, i.e., (Cy — C;—1), and the transformed asset return innovation, i.e., ¥(e¢), follow a
P-bivariate normal distribution, conditional on F;_1;

(iii) the utility function is linear.
Proof: See Appendix.

We have, by adding Proposition 2 to the development, made explicit the equilibrium valuation
process for the contingent claims that was implicit in the GARCH option pricing theory developed
in Duan (1995). The GLRNVR is a generalization of the local risk-neutral valuation principle of
Duan (1995), which is in turn a generalization of the risk-neutral valuation relationship developed
by Rubinstein (1976) and Brennan (1979). Our style of proof differs considerably from that of
Rubinstein (1976) and Brennan (1979), which is due to the complexity related to the time-varying
volatility. The message is, however, similar to that of Rubinstein (1976) and Brennan (1979). That
is, even if the asset market is incomplete, one is still able to characterize the pricing system by
avoiding the difficult task of identifying the preference parameter, and therefore retain to some
extent the simplicity of Arrow-Debreu pricing. Although some conditions on the utility function
and the aggregate consumption are imposed, there is no need to be particularly specific about
their parameter values. For example, the sufficient condition in (i) of Proposition 3 does not need
the knowledge of either the relative risk aversion coefficient or the distributional parameters of the
aggregate consumption.

Assuming that the GLRNVR holds, the asset return process can be characterized by a simple
risk-neutralized dynamic. The following proposition results from a substitution using the system



in (1)-(4) and the definition of the GLRNVR. Since the proof is somewhat obvious, it is skipped
here.

Proposition 4. (Option pricing system)
Assume that the GLRNVR holds. For ¢, <t <t, — 1,

X
B( )t(ﬂ +di1:8) = pusr + Vi 8T (Ziga — M) (9)
t
ht+1 == f(h7-7€7-; — 00 < T S t; 9) (10)
e = U NZ —\)ifT>H+1 (11)

where Z;11, conditional on F%, is a @-standard normal random variable. Moreover, A¢1 is
the solution to

EQ{B_l(MtH + VI O Zi1 = Me1); 6) | Fe ) = exp(Tsi41)- (12)

Propositions 2 and 4 together provide an operational basis for pricing any derivative claim
written on X7. Specifically, for any contingent claim g(Xr7), one can be certain that its time-t value
equals e """ EQLg(X )| F;} by part (ii) of Proposition 2 and the law of iterated expectations, if
the interest rate is assumed to be constant. Since the dynamic of X7 with respect to measure () is
completely characterized in Proposition 4, the valuation problem reduces to the task of computing
expectation using the system in Proposition 4. In actual implementation, for example, one can
use Monte Carlo simulation to generate many sample paths in accordance with the system in
Proposition 4 and then take the discounted average of the contract payoff to yield the price for the
derivative claim in question. If the interest rates are stochastic, the valuation result, due to the
law of iterated expectations, becomes E?{exp(— 3 1_, 1 75_1,:)9(X7)|F}. A dynamic for interest
rates also needs to be specified, and this interest rate dynamic must undergo risk-neutralization
before option valuation can be implemented. A specific model pertaining to the case of stochastic
interest rates under GARCH is available in Duan (1996b).

The option pricing system in Proposition 4 can be conveniently specialized to different model
specifications. For example, we can adopt the non-linear asymmetric GARCH(1,1) (NGARCH)
model of Engle and Ng (1993) to describe the asset price dynamic. Note that the NGARCH(1,1)
model is the standard linear GARCH(1,1) model with the allowance for leverage effect. Parameter
¢ in the following corollary captures the leverage effect; that is, a positive ¢ gives rise to a negative
correlation between the innovations in the asset return and its conditional volatility. In order to
see that the option pricing system in Proposition 4 is indeed a generalization of the GARCH option
pricing model of Duan (1995), we consider the continuously compounded return, i.e., 6 = 0, and
impose the conditional normality assumption on &1, i.e., ¥(+) is an identity mapping.

Corollary 1. (NGARCH(1,1) with conditional normality)



If £¢41, conditional on F, is a P-standard normal random variable, § = 0, and

hiyr = Bo + Bl + Balu(er — ¢)?, (13)
Bo>0,61 >0,3 >0and B + B2(1l +c?) <1, then, for t; <t <t, —1,
ln(X)Z1 +dip1) = Tepp1 — %htJrl + Vi1 Zia (14)
hiyi = Bo+ Bihe + Bahi(Zy — ¢ — M) (15)
- [ — i1+ 5l (16)

Vhe

where Z;y1, conditional on F%, is a (J-standard normal random variable.

Since Corollary 1 is essentially that of Duan (1995) and is implied by Proposition 4, our option
pricing system can be regarded as a generalized version of the GARCH option pricing model.
Equations (14)-(16) form a self-contained system and can, for example, be used to price European
options by simulation in a straightforward manner. The system also serves as the theoretical basis
for the methods developed by Ritchken and Trevor (1998) and Duan and Simonato (1998b) for
pricing American options in the GARCH framework.

Several recent studies indicate that the conditional volatilities of many stock index returns
exhibit long-memory property: see for example, Baillie, et al (1996), Bollerslev and Mikkelsen
(1996) and McCurdy and Michaud (1996). Long-memory in volatility pertains to the fact that
shocks to conditional volatility die away at a hyperbolic, instead of exponential rate. The option
pricing system in Proposition 4 can be applied to the long-memory GARCH models. We use, as
an example, the FIGARCH(1,d,1) model of Baillie, et al (1996) in the following corollary. Similar
results can be obtained for other long-memory GARCH models.

Corollary 2. (FIGARCH(1,d,1) with conditional normality)

If €411, conditional on Fy, is a P-standard normal random variable, § = 0, and
hew1 = Bo+ Bihy + [1 = BiL — (1 = OL)(1 = L) heyref g, (17)

0<d<1,8>0,61>0,and 0 <0 <1, then, for t; <t <t, —1,

1
+diy1) = Tit+1 — §ht+1 + V1241 (
hest = Po+Bihe+[1—BL — (1 —0L) 1 — L) hesrey, (
e = Zy—MNifr>+1 (20
Hr — 7’771,7 + %h”r (

N

where Z; 1, conditional on F;, is a @)-standard normal random variable.




Implementing the FIGARCH option pricing model is more complicated because it requires
conditioning on an infinite sequence of lagged error terms.® For practical reasons, however, one
must truncate the infinite sequence at some large lag, say 500. Although Monte Carlo simulations
can still be used to price options, the methods developed by Ritchken and Trevor (1998) and
Duan and Simonato (1998b) are not applicable to the long-memory GARCH model because the
underlying system cannot be expressed as a low-dimensional Markov process.

3 Conditional leptokurtosis and volatility smile

There are several ways of analyzing the impact of conditional leptokurtosis. Although, the use
of conditional ¢-distributions has been popular among many researchers, it presents a conceptual
problem if it is used to model the continuously compounded rate of return. This conceptual
problem can be understood if we set 6 = 0 in Equation (1). Suppose that the innovation term in
(1) is a t-distributed random variable with x degrees of freedom. This combination of assumptions
implies that the continuous compounded rate of return is modeled as a conditionally ¢-distributed
random variable. Under this assumption, computing the conditional expected simple rate of return
is equivalent to evaluating the moment generating function of a t-distributed random variable.
Since the moment generating function of a t-distribution with any finite degrees of freedom does
not exist, using t-distributions for asset innovations amounts to assuming an unbounded expected
simple asset return; that is, E9{exp(ur1 + r/hes16e41)|F:} = oo. Intuitively, this implication
is clearly not sensible. Technically, it violates the finite second moment condition for the asset
payoff that was required as in part (ii) of Proposition 2. In short, using ¢-distributions to model
continuously compounded asset returns is inappropriate.

One way of dealing with these conceptual and technical problems is to directly use t-distributions
in describing the simple rate of return in order to avoid exponentiation of the ¢-distributed random
variable. In terms of our notation, this approach amounts to setting § = 1 in Equation (1). This
modeling strategy, unfortunately, departs from the tradition of using continuously compounded
returns in the derivatives pricing literature. The use of ¢-distributions to directly model the simple
rate of return also permits the occurrence of negative asset prices, which is not a desirable feature
either.

In this section, we follow the tradition of modeling the continuously compounded rate of return.
To study the effect of conditional tail-fatness, we use the generalized error distribution (GED) as
in Nelson (1991). The density function of a GED random variable, after normalizing to yield a zero

6There is an alternative way of expressing the conditional variance dynamic in (19) which can be useful in practice;
that is,

hit1 = Bo + Brht(1 — 8?) + 2(07% - 7Tk:+1)Lkh/t5$
k=0

where 7o(d) = 1 and mi(d) = (—1)"II}_, == for k > 1. This expression for hii1 is a result of (1 — L)? =
ko ﬂ'k(d)Lk'

10



mean and unit variance, is

vexp(—3l3[")
2(1+1/v)nr(1/v)

1
_(2r/m)?
TG
and T'(-) is the gamma function. Parameter v determines the tail-fatness of the density function.
The standard normal density function is a special case that v = 2. For v > 2, the density function
has a tail thinner than the normal distribution. If v < 2, the fat-tail phenomenon occurs. The
case that v = 1 yields the double exponential distribution. This distribution is of particular
interest to us because Elexp(¢Z)] < oo if |¢| < v/2. This implies that if &, is of the GED with
v =1, EQexp(ptt+1 + /her16t11)|F:} is still finite for hyy1 < 2. In general, the expected simple
return exists if v > 1. Thus, the double exponential distribution is used as a bound on the set of
permissible fat-tailed distributions. The use of GED allows us to analyze the effect of tail-fatness
without departing from the tradition of modeling the continuously compounded return.”
For the volatility dynamic, we choose to employ the NGARCH(1,1) model so that the effect of
leverage in conjunction with other factors can be analyzed. The option pricing system in Proposition
4 can be specialized to the case of GED as follows.

g(z;v) = for 0 <v < oo (22)

where

Corollary 3. (NGARCH(1,1) with conditional leptokurtosis)

If €141, conditional on F; and with respect to measure P, is a GED random variable with
v>1,6=0, and
hipr = Bo + Brhy + Bohy(er — ©)?, (23)

Bo>0,61>0,8>0and B + B2(1 +c2) <1, then, for t; <t <t, — 1,

tdir) = e —In B9 (ep{VEa G B — )} )| +

Vi1 G Zier — Mga); ) (24)
hisr = fo+ Bihe + Boly (G B(Z0 — M)iv] — ) (25)

where Z;, 1, conditional on J, is a @Q-standard normal random variable, and G~1[-;v] stands
for the inverse GED cumulative distribution function with parameter v.

"If an asymmetric conditional distribution is preferred, the approach proposed by Fernandez and Steel (1998) can
be used to construct such a density function. Specifically, let

2

1
Tt5

g (zv,7) = {9(§% V)X {ze[0,00)} T 9(V25 V) X{ze(~00,0)} }

where .} is an indicator function. If v # 1, g*(z;v,7) is a skewed and leptokurtic probability density function. The
random variable following this distribution can then be normalized to have a zero mean and unit variance.

11



The option pricing system in Corollary 3 looks considerably more complicated when compared to
the case of conditional normality in Corollary 1. The complexity, of course, arises from conditional
leptokurtosis. Specifically, the functions G(-) (corresponding to the GED) and ¢(-) (corresponding
to the standard normal distribution) are different so that G=1(:) and ¢(-) do not cancel each
other. The presence of risk premium parameter A; further complicates the matter. Although the
option pricing system with conditional leptokurtosis is analytically complicated, it is still completely
characterized as a self-contained pricing system and can be numerically implemented by Monte
Carlo simulation.

For simplicity, we assume in this section that the asset risk premium A\; and r;_1; are constant.
If interest rates are stochastic, the valuation problem becomes considerably more complicated.
As discussed earlier, a dynamic for interest rates will need to be specified, and this interest rate
dynamic must also undergo risk-neutralization before option valuation can be implemented. A
Furopean call option with maturity 7 and exercise price K has a time-f theoretical price equal to
e " E9max(X;y, — K,0)|F]. This price can be numerically assessed by repeating the following
empirical martingale Monte Carlo simulation steps:®

1. Identify an observable two-dimensional sufficient statistic at time ¢ ; that is (X¢, hey1).

2. Generate N standard normal random numbers, Zt(Ql,i =1,---, N, to advance the dynamics in
(24) and (25) to time ¢+ 1, and then make an empirical martingale adjustment. (Specifically,
we first compute the discounted sample average of simulated asset price for time ¢ + 1, and
then multiply each of the N simulated asset prices by the ratio of the initial asset price over
the discounted average. This adjustment ensures that the simulated sample has an empirical
martingale property.)

3. Repeat steps 1-2 until arriving at N simulated asset prices, Xt(QT,z' =1,---,N.

4. Compute each of N option payoffs. Average N option payoffs, and discount the average,
using the risk-free rate, back to the time of option valuation.

For the numerical analyses reported in this section, we use 10,000 Monte Carlo sample paths.
The numerical procedure for evaluating ¢(-) is a standard one. For G[-;v] and E®(exp{\/hi11
G '¢(Zir1 — N);v]}|Ft), the procedures are described in Appendix.

We conduct a numerical analysis to examine the Black-Scholes implied volatility smile pattern
exhibited by the GARCH option prices under the influence of conditional leptokurtosis. This
analysis is performed by computing the generalized GARCH option prices for a group of option
contracts and then converting their prices into the corresponding Black-Scholes implied volatilities.
This practice is similar to the typical empirical approach of taking the market price of an option and
converting it into the Black-Scholes implied volatility. The difference between our use in this paper

8The empirical martingale simulation method was developed by Duan and Simonato (1998a). This simulation
method has been shown to be much more efficient because it takes advantage of the fact that the discounted asset
price is a martingale under the risk-neutral probability measure. The empirical martingale simulation method can
also ensure that option pricing bounds are respected. This property is particularly useful for this paper because the
Black-Scholes implied volatility cannot be computed if option pricing bounds are violated by a price estimate.
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and the empirical studies in the option literature is that the prices are generated by a theoretical
model instead of the actual market prices of options. The use of the Black-Scholes implied volatility
to study option markets is a common practice in the literature; for example, Rubinstein (1985),
Sheikh (1991), Canina and Figlewski (1993) and Duan (1996a).

To estimate the NGARCH(1,1) model with the conditional GED, this study uses the S&P 500
index daily returns (continuously compounded) from January 3, 1994 to March 19, 1997, totaling
838 observations. The estimation is carried out by restricting the conditional mean to a constant, a.
This specification for the conditional mean makes the estimation easier, but leaves the parameter A
unidentified. To be completely consistent with Corollary 3, the conditional mean 1411 should equal
r—In {EQ (exp{\/htHG_l[(b(ZtH - )\),v]}|.7:t>} Such a quantity can be numerically evaluated
when parameter values are known. It, however, becomes extremely demanding in computing time
if one needs to repeat the procedure in search of the maximum likelihood parameter estimates. Our
empirical estimation based on the restricted model produces the maximum likelihood parameter
estimates and the standard errors in the following table.

Table 1. The estimated GARCH and conditional tail-fatness parameters using the
S&P 500 index daily returns from January 3, 1994 to March 19, 1997.

Parameter Estimate Standard error
a 6.6080 x 10~% | 1.2488 x 10~*
Bo 2.6627 x 107° | 1.2873 x 107°
51 0.8232 0.0675
Bo 0.0582 0.0199
c 0.9849 0.4184
v 1.2627 0.0869

The parameter v determines the extent of conditional tail-fatness. A smaller value for v implies
fatter tails. We consider three values for v: 1, 2 and 1.2627, with the last value being the parameter
estimate obtained in the empirical analysis. Recall that v = 1 gives rise to the double exponential
distribution. For v = 2, the asset return innovation becomes normally distributed. The actual
parameter estimate for v at 1.2627 implies a fat-tailed distribution.

The option maturity for our numerical analyses is set to three months (63 trading days) and later
to six months (126 trading days). The interest rate is fixed at 0% so that there is no ambiguity as
to whether an option is at-the-money. To conserve space, we only consider the case that the initial
conditional volatility is equal to the stationary standard deviation under measure P. Similar to
Theorem 3.1 of Duan (1995), the stationary standard deviation of the model can be shown to equal
V/Bo[l — B1 — B2(1 + ¢2)]~1. The parameter values in Table 1 yield a stationary standard deviation
(annualized) equal to 10.4%. The comparison is repeated for different moneyness positions which
are expressed as a ratio of the exercise price to the underlying asset price.

The results are summarized in Figures 1-4. Figure 1 reports the implied volatility curves
corresponding to three different values of v with the risk premium parameter A set to 0. All
other parameters are at their estimated values. The typical volatility smile pattern emerges. The
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effect of conditional leptokurtosis is interesting. If conditional leptokurtosis increases, the implied
volatility becomes higher for the out-of-the-money options, but has little effect on other options.
The downward sloping feature of these curves is primarily a result of a positive leverage parameter,
i.e., ¢ = 0.9849. Although not reported here, a negative ¢ will cause the volatility smile curve to
slope upwards. If the option maturity is increased to six months, conditional leptokurtosis has little
impact on the level of implied volatility (see Figure 2). An increase in maturity has the effect of
flattening the volatility smile curve, however. This maturity effect is similar to that established
earlier by Duan (1995), and is consistent with the empirical evidence documented in the literature.

Corollary 3 can be reduced to Corollary 1 when conditional normality is assumed, i.e., v = 2.
In such a case, the unit risk premium of the asset return, A, can be directly added to the leverage
parameter, ¢, to determine the overall leverage effect under the locally risk-neutralized probability
measure (). This result suggests that for option pricing, either a positive unit risk premium or the
presence of leverage effect can produce a downward skewed volatility smile pattern. In other words,
the curve in either Figure 1 or 2, corresponding to conditional normality, can also be produced
when ¢ = 0 but A = 0.9849.

Conditional leptokurtosis, however, destroys this additivity. Figures 3 and 4 are presented to
study its effects. In Figure 3, we set both the risk premium parameter, A, and leverage parame-
ter, ¢, to 0. Since c affects the magnitude of the stationary variance under measure P, we must
make a compensating adjustment to parameter 3y so that the stationary variance can remain un-
changed after c is altered. The volatility smile curve corresponding to the GED with the estimated
tail-fatness parameter value is fairly flat for most part. The curve corresponding to conditional
normality is lower for both in-the-money and out-of-the-money options. In other words, the effect
of conditional leptokurtosis is to increase the value for in-the-money and out-of-the-money options.

In Figure 4, the leverage parameter, ¢, continues to be zero whereas the risk premium parameter,
A, is increased to 0.5. Notice that the smile curves are all skewed downwards under this scenario,
which means that the skewed smile need not come from the leverage parameter. A positive risk
premium can also cause the volatility smile to skew toward the out-of-the-money options. The effect
of conditional leptokurtosis does show up prominently when compared to the patterns in Figure
1. The effect of the risk premium parameter differs from that of the leverage parameter if the
asset return innovation has conditional fat-tails. When the underlying asset contains a positive risk
premium, fatter-tails simply make option more valuable across the board. Its effects are particularly
pronounced for in-the-money options.

Comparison of Figures 3 and 4 also leads to another interesting conclusion. Recall that the
stationary standard deviation under the data generating probability P, based on the estimated
parameter values, equals 10.4%. The implied volatilities in Figure 3 are all close to this value,
whereas those in Figure 4 are much higher due to a positive A. This result is actually predicted
by our option pricing theory. This is because local risk-neutralization transforms the dynamic of
conditional volatility in such a way that a positive A\ increases the level of stationary volatility
under measure (). Empirical studies on option prices typically conclude that the implied volatility
is higher than the corresponding historical volatility or “realized” volatility. This kind of empirical
findings thus lends support to the option pricing theory developed in this paper.

Our results are particularly interesting when compared to Figure 2 of Rubinstein (1994). Ru-
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binstein’s plot is a typical volatility smile of the S&P500 index options for the post-1987 stock
market crash period, in which the smile is close to being a straight line. Rubinstein (1994) also
refers to a paper by Shimko (1991) which reported a very high negative correlation between the
implied volatility innovation of the S&P100 index option and the return innovation of that index
for the post-crash period between 1987 and 1989. The negative correlation of this sort can be
viewed as a reflection of the joint leverage effect under the locally risk-neutralized measure ). In
our theoretical framework, the joint leverage effect is captured by a positive value for ¢ and/or A.
Rubinstein’s empirical finding is thus not surprising from the standpoint of the GARCH option
pricing theory.

4 Conclusion

A generalized GARCH option pricing model is developed in this article. This generalized theory
allows for conditional leptokurtosis and many other well-documented features of the asset return
dynamics. The GARCH option pricing model of Duan (1995) becomes a special case of our model.
Importantly, our model offers additional flexibility in a parsimonious manner in describing the
volatility smile phenomenon.

The ability of the generalized GARCH option pricing model to describe the observed volatil-
ity smile is important. It constitutes a more comprehensive theoretical model and leads to many
new theoretical insights. This option pricing model can also be used to generate reasonable im-
plied risk-neutralized probabilities. Similar to Shimko (1993) and Rubinstein (1994), these implied
risk-neutralized probabilities can be used to price exotic options and for achieving better hedging
positions. In a limited-scale study by Duan (1996a), the GARCH pricing model with conditional
normality has been found to be successful in describing the volatility smile of the FT-SE 100 index
options. An exploration of practical benefits of this generalized GARCH option pricing model is
left for future research.

5 Appendix
Proof of Proposition 2.

(i) It is clear that @ is a positive measure because marginal utility is by definition positive. We
need to show that [1d@Q =1 to conclude that @ is a probability measure.

[

= EP {exp |—plty —t) + Z (rs—1,s +1n
s=t;+1

U'(cs)

U,(Cs—l) ) |‘7:tz

u—l U’ Cs
) P {—P(tu — = 1)+ (r 1 s +1n ﬁoﬁ%)}
exp(rs, 1,6, B [exp(—p) gy | P, 1| 17
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(i)

ty—1

= pF {exp |:p(tu -t -1+ Z (re—1,s +1n %)

s=t;+1

‘Ftl}'

The last equality is due to

U'(C)

EP [exp(—p)—U,(Ct I

“Eu_1:| = eXp<_Ttu_17tu)'

That is, one dollar payable at time ¢, has its time-(¢, — 1) value equal to exp(—r¢,—1.4,)-
Continuing the process, one obtains [ 1d@ = 1.

Using the asset pricing equation in (6) we only need to show

e—n_l,tEQ((W +D )|]: 1) — P e—PM(W +D )|.7: 1
t ) t— U'(Ci—1) ! A
Let t
u U'(Cs)
= Egr —p(ty — st FIn = '
o =E {exp[ p(t t) +Szt;rl(r 1,s T nU’(CS1))] |-7:t}

It follows that ¢; = 1 for any ¢ by the argument identical to part (i). Consider any bounded
Fi—1-measurable function p;_1. By the definition of conditional expectation and measure @},
we have

E9 {p_1 EC (W + Dy)| Fea] |7, b
= E?{p (Wi + Dy)|Fy,}

P S U'(C.)
= E" S pi1(Wi+ Dy)exp | —p(ty — ) + Z (7s-1,s +1n W) | Ft,
s=t;+1 ( 871)
- Prorexp [—plt =t = 1) + 30T 1 (1 + In i)
Y ((We+ Di)exp |—pltu =t +1) + S0 (1,6 + In gie)| 174 ) 17,
Since
t
v U'(C,
EY ((Wt + D) exp [—p(tu —t+1)+ Z(rs,l,s +1n ﬁ)i |.7:t1>
s=t S

U'(Ch)

= EPexp(—p+ rio10)(We + Dt)m%U:tl) (by conditioning on F3)

(
= EBF (exp(—p + 1) (Wi + Dt)%lﬂl) (pr =1)
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we have
B9 {py 1 EC (W, + Dy)|Fy—1] |7, )

o | pevexp {—p(t —t = 1)+ 37} 1 (reers + 1n Ulf(éfj)l))}
EP (exp(—p +re1,)(Wh + Do) 17 ) |7,

= B

P exp [—pl(t =t — 1) + Y} 4y (rere + In )|
B7 (exp(—p+ ri1,) (W + DHEL |7 ) |7,

Pt—1€xp {—P(t —t) + Zs tl+1(7’s Ls + In U((C_)l))}
EFf (exp( +ri ) (W + Dt)U/ 1) | Fi 1) | F

- EF

= EF
U'(C
= EQ {ptlEP (exp(—p —+ T‘tflyt)(m/t —+ Dt) Ul(é t)) |f’t 1> |ftl} .

Since p;_1 is any bounded JF;_i-measurable function, it follows that

W, + D)\ Fr] = E (exp(—p ) (Wit m)%m_l) .

This in turn implies

U(c)

—Ti-1,t Q W, + D) F_ :EP{ —p
e (Wi + Dt)|Fi1] “UC)

(Wi+ DlFics }.

U'(C-1)
and the finite second moments condition given in the statement of the proposition. The proof
is thus complete.O

Note that E¥ {e p U'(Ct) (Wi + Dt)|ft,1} is finite because the Cauchy-Schwarz inequality

Proof of Proposition 3.

It is clear that measure ) is mutually absolutely continuous with respect to measure P. To
prove the remaining two requirements are met, we use the following intermediate lemma.
Lemma. Let Y; = In % If Y; and W(e:) have a bivariate normal distribution under measure

P and conditional on F;_1, then

(a) EQ( | Fi—1) = exp(ri—1;), and

(b) there exists a predictable process A such that W(e;)+ A, conditional on F;_1, is a Q-standard
normal random variable.

17



Proof: Part (a) is easily verified:

X
E9 <X tl +dt|ft_1>
t—

X,
= EF |:<Xt t1 + dt> exp(ri—1,s — p+ Y3)| Fi1
1

= % 1EP[(Xt+tht71)eXp(—P+K)!ft71]exp(7‘t71,t)
t—

= exp(ri—14)-

To prove (b), we consider the conditional moment generating function of ¥(e;) under Q:
ECfexp(q¥ ()| Fi-1] = B [exp(q¥(er) + rert — p+ Y2) | Fior .

Since, under measure P, U(e;) and Y; are conditionally bivariate normal random variables, it follows
from a linear projection that Y; = ayx — M¥(es) + Up, where Uy is P-independent of ¥(e;). Note
that ay and A; are F;_1-measurable. Thus,

E9exp(q¥(e0))|Fi-1]

= exp(as +r—1 — p)E  {expl(qg — M) T (er) + Uy]| Fea }
1

= explay +r_1t—p+ §EP(UEIE—1)}EP{GXP[<Q — X)W (er)]|Fio1}
L piro )\% q2

= exp[at +ri1r—p+ §E (Ut |‘/Tt71) + ? + E - )\tq].

Let ¢ = 0, and use the fact that EQ(1|F;_1) = 1 to yield

2
Eexp(q¥(e0))|Fi1] = exp(T = Ma).
This in turn implies
Q’(Et)|ft,1 ~ N(—/\t, 1)

under measure (.0
With the intermediate lemma in place, the three assertions in the proposition can be proved
easily.

(i) In ML) =(g1—1)ln C?il where ¢; is the constant relative risk-aversion coefficient. Since

U (Cr—1
In C?_tl and W(e;) have a P-bivariate normal distribution conditional on F;_ 1, the result is
immediately established.

(ii) In U?Ef}i) = —q2(Cy — Cy—1) where @2 is the constant absolute-risk-aversion coefficient. The

assertion is true because (Cy — C¢—1) and ¥(e;) have a P-bivariate normal distribution con-
ditional on F;_1.
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(iii) This result holds trivially because the ratio of marginal utilities equals one.0

Numerical Algorithm.

A. Finding y = G~Y(z;v)
Consider a sequence of values: kAy where k =1,2,---. Let G(0;v) = 0.5 and

A
GlkAy: ] = Gl(k — 1) Ay:o] + 57 (glkAy: ] + gl(k — 1)Ays o))
Let n be the smallest k£ such that G[kAy;v] > 1 — € where € is some small positive real number.

For = € (0.5,1 — €], there exists a unique positive integer k such that G[(k — 1)Ay;v] < z <
G[kAy;v]. This allows us to define an interim function for = € (0.5,1] as follows:

B 2= G[(h=1) Ayl _
H(w;v) = { (k 1+ G[k:Ay;v]fG[(k:fl)Ay;v]) Ay for z € (0.5,1 — ¢

nAy for x € (1 —¢,1]
Finally,
H(x;v) if x € (0.5,1]
G Hav)=< 0 if x = 0.5

—H(1—=x;v) ifz€][0,0.5)
For the results reported in this article, we set ¢ = 0.00001 and Ay = 0.005.
B. Computing E¥ (exp{\ Shi 1GH(Zig1 — N); U]}|.7:t)

This quantity can be computed using a “vector” Monte Carlo simulations. Suppose that we
are at time ¢ and want to simulate for future time points. Instead of simulating the whole sample
and then repeating N times, we first simulate a vector of N independent standard normal random
variates for time t + 1, i.e., {Zt(i)hi =1,2,---,N}. Compute G_1[¢(Zt(i)1 — A);v] according to the

procedure described in A. Note that A;1; is measurable with respect to F;. For the k-th element
(k)

of the vector containing simulated h;y1, denoted by htil, we can compute the following quantity:
N
> e (G 920 — X))
N P11 t+1 ;
i=1

to approximate E? <exp{ hgi)lG*1[¢(Zt+1 -\ v]}\}}) Repeating for k = 1,2, ---, N completes

the “vector” simulation for time ¢ + 1.0
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Figure 1. Impact of conditional leptokurtosis using the Black-Scholes implied
standard deviations (annualized) of 3-month European call options with the risk
premium parametex = 0. The estimated tail-fatness parameter of the GED equals
1.2627, which is estimated using the S&P 500 daily index returns from January 3,
1994 to March 19, 1997. The other two conditional distributions are assumed with
other model parameters fixed.
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Figure 2. Impact of conditional leptokurtosis using the Black-Scholes implied
standard deviations (annualized) of 6-month European call options with the risk
premium parametex = 0. The estimated tail-fatness parameter of the GED equals
1.2627, which is estimated using the S&P 500 daily index returns from January 3,
1994 to March 19, 1997. The other two conditional distributions are assumed with
other model parameters fixed.
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Figure 3. Impact of conditional leptokurtosis using the Black-Scholes implied
standard deviations (annualized) of 3-month European call options with the leverage
parametec = 0 and the risk premium parameier 0. The estimated tail-fatness
parameter of the GED equals 1.2627, which is estimated using the S&P 500 daily
index returns from January 3, 1994 to March 19, 1997. The other two conditional
distributions are assumed with other model parameters fixed.
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Figure 4. Impact of conditional leptokurtosis using the Black-Scholes implied
standard deviations (annualized) of 3-month European call options with the leverage
parametec = 0 and the risk premium parameker 0.5. The estimated tail-fatness
parameter of the GED equals 1.2627, which is estimated using the S&P 500 daily
index returns from January 3, 1994 to March 19, 1997. The other two conditional
distributions are assumed with other model parameters fixed.
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