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Abstract

This model is based on a representative agent approach in an economy in which the nominal
aggregate consumption growth rate follows the GARCH process. We first derive an equilibrium
nominal interest rate process. This equilibrium nominal interest rate process is shown to be
mean-reverting and heteroskedastic with a non-central y? innovation. An equilibrium pricing
measure is then constructed, and the equilibrium interest rate dynamics under this measure is
characterized to serve as a pricing mechanism for the term structure of interest rates and inter-
est rate derivatives. This new pricing approach is found to substantially differ from the term
structure models of Vasicek (1977) and Cox, Ingersoll and Ross (1985) and the bond option
pricing models of Jamshidian (1989) and Cox, Ingersoll and Ross (1985). It offers a promising
alternative amid the negative empirical findings for the existing models.
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1 Introduction

In a recent article, Duan (1995) developed an option pricing model based on the premise that asset
returns follow the GARCH process. The motivations for the GARCH option pricing model are two-
fold. First, extensive empirical evidence has strongly indicated that the GARCH model can better
describe the heteroskedastic and leptokurtic properties exhibited by asset returns; see for example,
Bollerslev, Chou and Kroner (1992). Second, the Black-Scholes (1973) option pricing model is
known to exhibit systematic biases. It is shown in Duan (1995) that the GARCH option pricing
model is able to explain away the systematic biases exhibited by the Black-Scholes (1973) model.
Empirically, Amin and Ng (1993) tested the GARCH option pricing model using three different
GARCH specifications: linear GARCH of Bollerslev (1986), exponential GARCH of Nelson (1991)
and the GJR-GARCH of Glosten, Jagannathan and Runkle (1993). They concluded that the
GARCH option pricing model performs significantly better than the Black-Scholes (1973) model.
Heynen, Kemna and Vorst (1994), on the other hand, used the GARCH option pricing model
to examine the term structure of implied volatilities. They concluded that among the bivariate
diffusion option pricing model of Hull and White (1987) and the two versions of the GARCH
option pricing model, the exponential GARCH version is the only one not being rejected. In a
study of using the GARCH option pricing model to describe “volatility smile”, Duan (1996a) has
found the volatility smile and term structure of implied volatilities of stock index options can
be simultaneously fitted to a high degree of accuracy, and the out-of-sample fitting performance
remains excellent.

In this paper, we generalize the pricing methodology of Duan (1995) to cover interest rate
derivative contracts. Our model development takes as the first step the derivation of equilibrium
nominal interest rate. We consider a representative agent economy in which the aggregate consump-
tion growth rate follows the GARCH process. Our derivation shows that the equilibrium nominal
interest rate is a linear transformation of the conditional variance, and as a result, the equilibrium
nominal interest rate dynamics is a mean-reverting, heteroskedastic process with a non-central >
innovation.! The second step of our derivation is to devise an equilibrium pricing measure which
can be used to facilitate the development of pricing models for bonds and options. Under the
equilibrium pricing measure, the dynamics of the equilibrium nominal interest rate is altered some-
what. The innovation undergoes a mean shift, but again follows a non-central y? distribution with
a different non-centrality parameter. This derived dynamics makes it possible to price bonds and
bond options under the GARCH setting.

We numerically examine the properties of the term structure and bond option pricing models.
For the term structure of interest rates, the GARCH-based approach is compared to both the
Vasicek (1977) and Cox, Ingersoll and Ross (CIR) (1985) models. The strategy is to first generate

1 This endogenously derived interest rate process differs from the constant elasticity of variance (CEV) or GARCH
specification that is sometimes adopted by researchers. For the examples of the CEV specification, see Vasicek (1977),
Brennan and Schwartz (1980), Courtadon (1982) and Cox, Ingersoll and Ross (1985). The examples of using the
GARCH model can be found in Weiss (1984) and Bollerslev, Engle and Wooldridge (1988).



a normal yield curve based on the GARCH term structure model, and then to fit the Vasicek and
CIR term structure to this generated yield curve. For the Vasicek model, it is possible to adjust
parameter values to achieve a very good fit. It is not so for the CIR model with the fitted yields
to be higher than the target yields for shorter maturities and lower for longer maturities. If one
increases or decreases the short-term rate without changing the parameter values, the yield curves
corresponding to three models begin to differ even more. Using the same fitted parameter values,
the GARCH-based bond option pricing model is also compared to the model of Jamshidian (1989)
and that of CIR. The GARCH-based model always yields a higher option price in comparison to
the CIR model. It also produces higher prices, as compared to the Jamshidian model (1989), except
for deep out-of-the-money bond options. Given that the models by Vasicek (1977), CIR (1985) and
Jamshidian (1989) are known to have unsatisfactory empirical performance, the GARCH-based
approach offers a promising alternative.

2 Equilibrium nominal interest rate dynamic

Let Cy and ¢; denote the nominal and real aggregate consumptions at time ¢, respectively. The
price deflator at time ¢ is denoted by ;. By definition, C; = ¢;me. We assume that the nominal
aggregate consumption growth rate (continuously compounded) follows a GARCH-Mean model
of Engle, Lilien and Robins (1987). Specifically, we adopt the non-linear asymmetric GARCH
(NGARCH) process of order (1,1) (see Engle and Ng, 1993).2 If the parameter v, to be specified
below, equals zero, then the model reduces to a linear GARCH model. Let F; denote the information
set up to and including time ¢, and P denote the data generating probability measure that governs
all random variables. A formal description of our assumption is now in order.

Assumption 1 Under the data generating probability measure P,

Aln(Cy) = p+ K + /G141 (1)
er+1lF ~ N(0,1) (2)
G1 = oo+ onger —¥)* + asg (3)

where ap > 0,1 > 0,0 > 0 and a;(1 +d)2) +ag < 1.

The parameter restriction that ag > 0,1 > 0 and ap > 0 ensures positive conditional variances.
According to Duan (1996b, Corollary 2), the restriction that a;(1 + %?) + ay < 1 ensures the
existence of stationary variance and the strict stationarity for the conditional variance process.

We assume a representative agent economy in which the agent has an additive time-separable
preference. The utility function of real consumption, ¢, is denoted by U(¢;). For any nominal asset

2We use the NGARCH(1,1) model because of its simplicity and its ability to capture several key features, such as
time-varying and clustered volatilities, fat-tailed distributions and leverage effect, exhibited by financial time series.
All theoretical results derived in this paper can be further generalized to the augmented GARCH(1,1) setting of Duan
(1996b). The theoretical arguments remain the same and the resulting equilibrium interest rate dynamics continues
to be Markovian.



with the nominal price, X¢, and the dividend payment, D;, at time ¢, the following Euler’s equation
must be satisfied in equilibrium:

Xe _ B (et U'(ct+1) (Xeg1 + Diya)

Tt U’ (Ct) Tt4+1

[ Fe} (4)

where ¢ is an intertemporal discount rate. The model of this nature has been widely employed in
the literature. Lucas (1978), Mehra and Prescott (1985) and Campbell (1986) are some examples.
In contrast to most existing models, our model is unique in the sense that the nominal aggregate
consumption growth rate follows an NGARCH(1,1) process. The existence of equilibrium for this
model is essentially that of Lucas (1978).3 In this article, we are not concerned with the issue of
existence. Instead, Euler’s equation in (4) serves as the basis for our derivations.

Let 7 denote the nominal one-period risk-free interest rate (continuously compounded) at time
t. Consider a one-dollar payoff at time ¢+ 1. Its time-t nominal value equals exp(—r;) by definition,
and the use of (4) leads to the following relationship:

—ry _ Py —6 U,(Ct+1) Tt
€ - E {6 U/(Ct) 7Tt+1 "7:;5} (5)
In order to characterize the dynamics for r¢, the representative agent must be endowed with a
more specific preference structure. We adopt the logarithmic utility function, which is an assump-
tion frequently employed in the term structure literature. This assumption allows for combining
the real consumption with the price deflator, which turns the nominal consumption into a sufficient

statistic for asset pricing.
Assumption 2 U(c;) = In(c)

The following theorem completely characterizes the dynamics for the equilibrium nominal in-
terest rate.

Theorem 1 Under the data generating probability measure P,

1.
Ary = d(m —r) + o(re — a)Wep (6)

where

¢ = l-oa(l+v%) —az,a=8+pu,

o = Om/Q_FZWEﬂn:a_FW’

Wiy = (e —¥)? —(1+ ¢2)7

V2 4 4?

EY(Wi|F) = 0, and EP(W2 | F) =1

*In Lucas (1978), the existence and uniqueness of the exchange equilibrium were established under the assumption
of a Markovian output. His proof hinges on treating the asset price as a function of the output. In the current setting,
the aggregate consumption is the aggregate output in equilibrium if the equilibrium exists. Since the aggregate
consumption follows the GARCH(1,1) process, it is not Markovian in a univariate sense. The Lucas arguments
continue to apply to this case, however, because the GARCH(1,1) process can be made into a bivariate Markovian
process (see Duan, 1995).



2. a is a lower (upper) bound of nominal interest rates if k > (<)%, and = aif Kk = %;

3. r¢ is a strictly stationary process.

Proof: See Appendix.

This endogenous characterization of the interest rate dynamics differs from the usual constant
elasticity of variance (CEV) specification in two aspects. First, the conditional standard deviation
described in (6) is a linear function of the difference between the prevailing interest rate and a
constant. In the CEV specification, this constant is set equal to zero. The linear specification
for the conditional volatility is also more consistent with some empirical findings; for example,
Chan, et al. (1992), Rumsey (1993) and Honore (1996). These findings suggest the estimated CEV
coefficient is more in line with linearity. Second, in contrast to the use of a Gaussian innovation, the
interest rate process in (6) is driven by a non-central x? random variable with its degrees of freedom
equal to one. Comparing to the GARCH specification adopted by many to model the interest rate
process, the dynamic in (6) implies that the interest rate process resembles more the conditional
variance process of a GARCH model than a GARCH process itself. This is because the equilibrium
interest rate is a linear transformation of the conditional variance. In other words, the equilibrium
interest rate dynamics is essentially a process for the conditional variance of the aggregate nominal
consumption growth rate. This link has also been utilized in a recent paper of Duan and Jocobs
(1996) to reconcile two seemingly unrelated empirical findings on the long-memory properties of
index returns and interest rates.

3 Equilibrium pricing measure

For asset pricing, it is often more convenient to create a new probability measure that is different
from the data generating probability measure. The ideal candidate is the one supportive of the
standard martingale pricing result. Toward this aim, we define a measure ) by

T—-1 .U/(CT) 70
dO = _6T+Zi:0 Ti —dP 7
Q=e T (co) 7 (7)
for some large finite 7. Since [1d@ = 1 and the Radon-Nykodyn derivative in (7) is positive, @
is a probability measure. Since measure () is derived by employing marginal rates of substitution,
Q is hereafter referred to as the equilibrium pricing measure. Under Assumption 2, the defining
relationship in (7) becomes

T—1
1Q = e T+ g p (8)
Cr
The following theorem provides a key linkage relating the conditional expectation operations

under two different probability measures.

Theorem 2 For any F;1-measurable function, Zy 1, t < T — 1,

Ci
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EQ(Zy1|F) = EX (Zyyrem ™



Proof: See Appendix.
With a change in measures, Euler’s equation in (4) can be stated in a different way. Corollary
1 establishes a result that is consistent with the well-known martingale pricing principle.

Corollary 1 Fort <T —1,
X = EQ{e_” (Xt41 + Deyr)|Fe} (10)

Proof: Follows from equation (4), Assumption 2 and Theorem 2.

Although the result in Corollary 1 serves as the conceptual basis for deriving the pricing models
for bonds and bond options, it is not an operational model unless the complete knowledge of the
distributional characteristics, under measure (), of the equilibrium interest rate is known to us.

4 Term structure and bond option pricing

In this section, our task is to characterize the equilibrium interest rate under the equilibrium pricing
measure (), which in turn yields the pricing models for bonds and bond options. The dynamics of
the equilibrium interest rate in Theorem 1 is expected to obey a different stochastic process under
the equilibrium pricing measure (. Define a notation n = (m’foa) 3 The following theorem provides
a complete characterization of the equilibrium interest rate’s dynamics under Q).

Theorem 3 Under the equilibrium pricing measure @, for ¢t <T — 1,

on ( 201#«/ rt—a
NCER T NCERTE
ol - M » O I = Dy (11)

1+ 2¢?

Ary = d(m—ry) + —a)+ e (ry—a) +

where

€1 = 6t+1+\/77(7“t—a)~]\7(0 1) conditional on F3,
letin =¥ — Ve —a)]* = [1L4+ (W + /n(r: — a))
¢2+4¢+m

EC(Wia|F) = 0, and EQW4|F) =1

* —
Wt+1 -

Proof: See Appendix.

The parameter n is positive (negative) if m > (<)a. If a is a lower (upper) bound, then
m > (<)a. In either case, n(r; —a) is always positive, and hence the dynamic in (11) is well-defined.
According to Theorem 3, the interest rate process under @ is driven by a non-central x? innovation
whose degrees of freedom equals one and non-centrality parameter is a function of the interest rate.



This theorem indicates that the conditional non-centrality parameter is ¢» + v/n(ry —a).* This
non-centrality parameter reflects the magnitude of the prevailing interest rate in relation to the
parameter a. The dynamics in (11) contains six parameters: ¢, m,o,a,? and 7. In contrast to the
dynamics in (6), the additional parameter 7 can be likened to the risk premium parameter in the
term structure models such as Vasicek (1977) and CIR (1985).

Using Corollary 1 and the law of iterated expectations, the time-t price for per dollar face value
of a zero-coupon, default-free bond with maturity 7, denoted by B;(7), can be written as

Bi(r) = E%e™ 2t "|F). (12)

Let Ri(7) denote the yield to maturity at time ¢ for a default-free, zero-coupon bond of maturity
7. Then,

t+7—1

Ri(r) = —2in{B(e” 2T M R)). (13)

For a coupon bond, its value can be simply computed with repeated use of (12) to calculate the
values for all future payments associated with this coupon bond. The pricing formula in (12) thus
represents an equilibrium single-factor term structure model. The model in (12) has no closed-form
solution except for the case that 7 = 2. The closed-form solution for this case can be derived by
applying the moment generating function for the non-central y? distribution with degrees of freedom
1. In general, this term structure model must be computed using some numerical methods. In this
paper, we use Monte Carlo simulations to compute bond prices.

For the pricing of bond options, the valuation equation also follows from Corollary 1 and the
law of iterated expectations. For example, consider a European-style call option, maturing at time
T and with exercise price K, written on a zero-coupon bond with maturity 7 and face value F.
Denote its time-¢ value by OF. It follows that

OF = EQ{e~ it " Maz[Br(r)F — K, 0)|F,} (14)
For options on a coupon bond, simply replace Br(7) in the above equation with a suitable coupon
bond counterpart. The computation of this model must again be based on some numerical methods.
In this paper, we use Monte Carlo simulations to compute the option value. Since the bond price
at the expiration of the option must also be computed by Monte Carlo simulations, we have come
up with a quick procedure that makes the simulation task manageable. This procedure calls for
storing a set of bond prices in memory. This simulation procedure will be discussed in the next
section.

5 Numerical examples

The GARCH-based models for term structure of interest rates and bond options are demonstrated
numerically in this section. Comparisons to some existing models are made in order to gain further

“The non-centrality parameter of a non-central x? is usually defined as the square of the mean-shift parameter.
For expositional convenience, we ignore the squaring operation.



insights into the properties of the GARCH-based models. The GARCH-based term structure model
and the models by Vasicek (1977), CIR (1985) are non-nested. To make comparisons, we act as
if all three models are fitted to a given yield curve. In this section, we choose the GARCH-based
term structure model as the benchmark. Since the purpose of this comparison is to examine the
differences among these three models, we could actually use any one of the three models to generate
the target yield curve.

For simplicity, we assume the basic unit of time is one week. Therefore, the shortest-term
interest rate is of one week. The parameter values used in these comparisons arem = 0.001154, ¢ =
0.2,0 =0.3,a =0,v = 0,7 = 100. The value for m yields 6% (annual rate) for the long-run average
one-week interest rate. As shown later in this section, the GARCH-based term structure model
with these parameter values will yield a long-term interest rate around 11%.

5.1 Term structure of interest rates

We use the GARCH-based model in (13) to produce the yield curves corresponding to the low,
average and high one-week interest rates. The bond pricing model is computed using Monte Carlo
simulations with 50,000 sample paths. Each of these three yield curves is compared to the models
by Vasicek (1977) and CIR (1985). The parameters for these two comparison models are estimated
using 520 yields for the maturity ranging from 1 to 520 weeks. These yields are obtained by using the
GARCH-based term structure model and setting the current one-week interest rate to its long-run
average value, m. The parameter estimation is carried out as a cross-sectional non-linear regression
forcing the non-linear system to be either the Vasicek or CIR model. Since the use of a non-linear
cross-sectional regression to estimate these two models is known to have an under-identification
problem, we choose to fix their respective long-run average one-week interest rates at the value for
m, which equals 0.001154. The rest of parameters in the Vasicek (1977) model are estimated to
be 0.023614 for the mean-reversion intensity, 0.001308 for the volatility parameter and 0.044873
for the risk premium. For the CIR (1985) model, the estimated parameter values are 0.519632,
0.919471 and -1.655329, respectively.

Figure 1a plots the yield (annualized) curve, up to 300 weeks, corresponding to the GARCH-
based term structure model and the fitted curves for the Vasicek and CIR models. As the result
indicates, the fit for the Vasicek model is extremely accurate, whereas the fit for the CIR model
is quite poor, too high for shorter maturities and low for longer maturities. The inability of the
CIR model to fit the yield curve generated by the GARCH-based term structure model reflects the
fundamental difference in the curvatures exhibited by these two models.

[Enter Figure la, 1b and 1c here]

The difference among the GARCH-based term structure model and the two comparison models
becomes very pronounced in the time-series dimension. Since the short-term interest rate will
change over time, it is important to know how these yield curves respond to the change. If we let
the one-week interest rate to be half of its long-run average, the yield curves for these three models
depart significantly. The CIR model produces even larger yields, relative to the GARCH-based
model. The Vasicek model, on the other hand, gives rise to lower yields over the entire maturity



spectrum than the GARCH-based model (see Figure 1b). If the one-week interest rate becomes
twice as large as its long-run average, the relationship is reversed. Figure 1c indicates that the CIR
model produces lower yields than the GARCH-based model except for the short end of the maturity
spectrum. Interestingly, the Vasicek model produces higher yields throughout. In summary, the
direction of departure from the GARCH-based model depends on the position of the one-week rate
relative to its long-run average.

5.2 Bond options

Options to buy the three-month Treasury bill are used as the example of bond options. The
analysis is conducted for a range of moneyness positions and interest rate levels. The model in (14)
is calculated by Monte Carlo simulations. Since the price for the three-month Treasury bill at the
option’s expiration must also be computed using Monte Carlo simulations, the overall Monte Carlo
simulations could be carried out in a tree-like structure with one intermediate node. This way of
computing, however, presents a numerical difficulty; for example, if we simulate 50,000 bond prices
at the option’s maturity and each of the bond prices is computed by 1,000 interest rate paths, the
total number of simulated sample paths equals 5x107.

To overcome this difficulty, we have devised a particular simulation scheme. First, we compute
and store in memory the bond prices corresponding to 300 different interest rates with each being
computed using 1,000 interest rate paths. Since the system is Markovian, the only stochastic
element of the bond price is the interest rate at the option’s maturity. These interest rates (after
annualizing) ranges from 10 basis points to 3,000 basis points with the increment of 10 basis points.
Second, we simulate 50,000 sample paths of the short-term interest rate all the way to the expiration
point of the option. To compute the option’s payoff, we pick one of the pre-computed bond prices
that corresponds to the interest rate nearest to the simulated ending interest rate. Finally, we
compute the sample equivalent of the quantity in equation (14) by averaging the discounted payoffs.
This Monte Carlo scheme requires 350,000 simulated sample paths with 300,000 for the underlying
bond and 50,000 for the option. Of course, any satisfactory level of accuracy can be achieved by
adjusting the number of bond prices and the range of their corresponding interest rates. Since the
bond prices stored in memory are independent of the exercise price and maturity of the option, they
can be repeatedly used for options with different exercise prices and maturities, a very substantial
saving in computing time indeed.

Two alternative bond option pricing models - Jamshidian (1989) and CIR (1985) - are used
to compare with the GARCH bond option pricing model. Since Jamshidian’s model uses the
specification of Vasicek (1977) for interest rates, the parameter values can be taken from the
preceding sub-section. For the CIR bond option pricing model, the parameter values are also
available from the preceding sub-section.

For Figures 2a, 2b and 2¢, we assume that the face value of the underlying three-month Treasury
bill equals 1. The face value to exercise price ratio (F/K) ranges from 1 to 1.5. The maturity of all
options is fixed at 13 weeks. Interestingly, Jamshidian’s model in all cases yields a strictly positive
option value when F/K = 1. Since the market value of a zero-coupon bond cannot exceed its
face value, the option payoff for the case that F'//K = 1 must be zero always. Jamshidian’s model
violates this rational option pricing bound due to the assumption of Gaussian interest rates. In



other words, the possibility of having negative interest rates leads to the occurrence of the situation
in which the zero-coupon bond price is higher than its face value. This problem does not exist for
either the CIR model or the GARCH-based model because interest rates in these two models are
always positive.

[Enter Figure 2a, 2b and 2c here]

In Figure 2a, the one-week interest rate is set equal to its long-run average. Jamshidian’s model
clearly yields the highest option prices up to some moneyness position. This again is due to its
allowance for negative interest rates. The relationship between the GARCH-based model and the
CIR model is one-sided with the CIR model yielding lower prices. For Figures 2b and 2c, the
one-week interest rate is set at half and twice of its long-run average, respectively. Comparing to
the CIR model, the GARCH-based model continues to produce higher values in either case. The
relationship between the Jamshidian model and the GARCH-based model remains, in either case,
essentially the same as that in Figure 2a. The crossing point, however, moves to the right in the
case of a lower one-week interest rate, and to the left in the case of a higher interest rate, clearly due
to the change in the conditional probability of obtaining negative interest rates. In summary, the
GARCH-based model yields higher bond option values in comparison to the Jamshidian and CIR
models, with the exception of the negative interest rate effect permissible under the Jamshidian
model.

6 Conclusion

A representative agent economy is used to develop a model that can deal with the pricing of bonds
and interest rate derivatives in a GARCH framework. A stochastic equilibrium nominal short-term
interest rate process is derived endogenously. The equilibrium short-term interest rate is shown
to follow a process different from the usual specifications found in the literature. In equilibrium,
the interest rate dynamics is a mean-reverting, heteroskedastic process with a non-central y? in-
novation. Using the devise of the equilibrium pricing measure, the pricing models for bonds and
bond options are derived. Numerical comparisons suggest that this new modeling approach yields
results substantially different from the existing term structure and bond option pricing models.
Since the existing models generally perform rather unsatisfactorily in empirical studies, there is
a need for alternative models. The GARCH-based approach offers such an alternative, but needs
future research to determine its empirical performance.

7 Appendix

Proof of Theorem 1
Substituting U(c;) = In(e;) into (5) yields

_ s G T
e Tt — EP e 6

Ct4+1 Tt41
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Thus, re = 6 + p + M(]t+1. It is clear that r; is a constant if kK =

5 . Since gi41 > 0, it follows
that 7 > (<)8 4+ p if k > (<)3. This completes the proof for item (2). Since gi41 is a stationary
process by Assumption 1 (see Duan, 1996, Corollary 2), r; must also be a stationary process by
virtue of the above relationship. Ttem 3 is thus established. Substituting the relationship between
r¢ and ¢4 into the variance equation in (3) yields

2k —1

Tl —O0—p = 5 Oéo+[061(€t+1—¢)2+062](?°t—5—M)

= %2_ 1a0 + o (T 4+02) + ao)(ry — 6 — p) +
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Thus,

2k —1
Tyl = 5 0 + ¢a + a1 (1 +?) + aglry + o (ry — @)Wy q, or

2k — 1
Ary = 5 o+ pa — ¢ri +o(ry —a)Wipr

= ¢(m—ry) +o(re —a)Wip

The proof is now complete.O
Proof of Theorem 2
Consider any bounded F; - measurable function, ¢.

EQ(Zt+1¢t) = EQ[¢tEQ(Zt+1|~7:t)}-
Alternatively, by (7)
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Let ¢ = EP(676(T7t)+Zi:t ”%\Ft) It follows from the law of iterated expectations that
1y = 1. The preceding equation can be further deduced to yield
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Thus, E9(Zy41|F) = ET (Zt+1e*5(T*t)+ZiT:tl ”%]}}). Applying the law of iterated expectations,
the statement of this theorem is established.O
Proof of Theorem 3

We first characterize the distribution for ¢;,1 under measure Q).

s Co
Cis1
— ert—a—nthrlEP [e(w—m)fm |ft]
w2
= exp(r —a—KGq1 + — —w/qr1 +

EQ (ewet+1 ‘ft) — EP (ew5t+1+rt— ’]:%)

Qt+1
)

The first equality is due to Theorem 2, whereas the second and third equalities follow from As-
sumption 1.
Let w = 0. This implies that exp(r; — a — kg1 + 242) = 1, and thus,

2
w
EQ(e“’E”l |Ft) = exp(—w\/qir1 + 5 ).

By the property of moment generating function, the following must be true:

et41|Ft ? N(=v@11,1)-

From the proof for Theorem 1, r; = a + 2”‘ qt+1 =aq+ J‘— It follows that

ers1|Fi @ N(=\/n(ri —a), 1), or
eral 7 2 N0, 1).

It is now straightforward to verify that W, ,, defined in the theorem, has a zero conditional mean
and a unit conditional variance. Use of equation (6) yields

_ 2 _ 2
Ary = ¢(m—ry) +o(ry—a) (1 IZL 412i +¢7)

— /7N rt—a 1+¢)
o

o(r, —a) 2777*
= ¢(m—rt)+ml\/2+4(¢+\/77(?”t—a)) Wi +n(re—a) +2¢ U(Tt—a)]

on (r 200\/n(r: — a)
V2 a2 NoETe
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1422

The dynamics in (11) is now established.O

= d(m—ry) +o(re— a) S~

= d(m—ry)+ —a)’ + ———=—(r1—a) +
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Term Structure and Bond Option Pricing under GARCH

J.C. Duan

Figure 1a. The GARCH yield curve is computed by assuming the one-week interest
rate equal to its long-run average, 6%. The yield curves corresponding to Vasicek

(1977) and Cox, Ingersoll and Ross (1985) are the best possible curves fitted to the
GARCH yield curve. All yields are annualized.
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Figure 1b. The yield curves corresponding to Vasicek (1977) and Cox, Ingersoll and
Ross (1985) are generated using the parameter values obtained from the fitting in

Figure 1a. The one-week rate is set at half of its long-run average, i.e., 3%. All yields
are annualized.
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Figure 1c. The yield curves corresponding to Vasicek (1977) and Cox, Ingersoll and
Ross (1985) are generated using the parameter values obtained from the fitting in
Figure 1a. The one-week rate is set at twice of its long-run average, i.e., 12%. All
yields are annualized.
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Figure 2a. Options to buy the three-month Treasury bill under three models. The
maturity of the option is three months. The one-week interest rate is set equal to its
long-run average, 6%. F/X stands for the face value of the underlying Treasury bill
over the exercise price. The option prices are stated as per dollar face value of the
underlying Treasury bill.
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Figure 2b. Options to buy the three-month Treasury bill under three models. The
maturity of the option is three months. The one-week interest rate is set at half of its
long-run average, i.e., 3%. F/X stands for the face value of the underlying Treasury
bill over the exercise price. The option prices are stated as per dollar face value of the
underlying Treasury bill.
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Figure 2c. Options to buy the three-month Treasury bill under three models. The
maturity of the option is three months. The one-week interest rate is set at twice of its
long-run average, i.e., 12%. F/X stands for the face value of the underlying Treasury
bill over the exercise price. The option prices are stated as per dollar face value of the
underlying Treasury bill.
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