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Abstract

The use of a more general distribution function is often justified by treating the
proposed distribution function as an alternative hypothesis. The suitability of such a
distribution is then determined by the outcome of a nested test on a standard distribu-
tional assumption, which is typically a restricted version of the proposed distribution.
Although such a practice is known to be conceptually flawed, it frequently occurs in
the literature simply due to the lack of a better alternative. Although one can, in prin-
ciple, use the Kolmogorov-Smirnov (KS) test to tackle such a testing problem, there
are two difficulties associated with the KS test. First, it is hard to implement when
the parameter value(s) is/are unknown. Second, the power of the KS test is relatively
low. In this paper, we propose a generic parametric testing procedure based on a rel-
ative entropy construction. We demonstrate through a simulation study the superior
performance of this testing procedure. We also implement this testing procedure on
financial data using the popular GARCH model.
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1 Introduction

In this paper, we propose a generic testing procedure for assessing the appropriateness of any
given probability density assumption. The distributional assumption is critically important
in many statistical applications. Take financial applications as examples. The knowledge of
asset return distributions determines how investment decisions are made, and consequently
the risk-return profile of a portfolio. In day-to-day risk management practice, financial insti-
tutions would like to control their risk exposure due to potential adverse market movements.
Such a concern is in part motivated by self-interest and in part by governmental regulations.
A reliable assessment of such exposures clearly depends on the knowledge of asset return
distributions.

When a particular distribution is proposed for a modeling application, a classical way
of testing the appropriateness of such an assumption is based on the empirical distribution
function (EDF). Two well-known examples are the Kolmogorov-Smirnov (KS) test and the
Andersen-Darling test (Pearson and Hartley, 1972; Stephens, 1974; Stephens, 1986). In a
nutshell, the EDF test statistics measure the distance between the theoretical and empirical
distributions. With known parameter value(s), the distributions of the test statistics have
already been derived. For example, the distribution of the KS statistic can be determined by
the fact that the properly constructed empirical process weakly converges to the Brownian
bridge process. However in actual implementation of the EDF tests, the parameter values
of the null distribution are unknown. There are two main problems associated with the
EDF tests. First, the asymptotic distribution of the EDF test statistic will depend on the
class of null distributions being tested. The sampling error associated with the unknown
parameter(s) creates problems. In general, the way for handling the problem of unknown
parameter value(s) relies on simulation to generate critical values for testing. For example,
in the special cases of the normality and exponential distribution assumptions, Lilliefors
(1967,1969) offered tables of critical values for the KS test. The second problem is that the
asymptotic distribution of the test statistic may depend on the true values of the unknown
parameters (Stephens, 1986). It becomes inconvenient to apply the EDF approach as one
has to generate critical values for different true parameter values and null distributions

The application of the KS test to dynamic models can be significantly more complicated.
If one knows the time series parameter values, then the observed data series can be filtered
to obtain the empirical conditional distribution. However in reality, one does not have the
knowledge of the time series parameter values, and thus faces the combined problem of
unknown distribution and time series parameters. This difficulty in part leads to a common
practice in the literature that a more general distributional assumption of interest is treated
as the alternative hypothesis instead of the null, and it is considered accepted if its restricted
version is rejected.! Such a practice is theoretically flawed. The error of accepting the
alternative distribution is not controlled and has an unknown magnitude. In a recent paper,
Bai (1998) proposed a test of conditional distribution for dynamic models along the line of
the KS test. The test utilizes the martingale transformation of the Brownian bridge process

See, for example, Bollerslev (1987), Nelson (1991), Fernandez and Steel (1998), Theodossiou (1998),
among others. Some authors were fully aware of the questionable validity of such an approach and explicitly
stated a caution in the paper.



proposed by Khmaladze (1981) to remove the effect of sampling errors due to the unknown
parameter estimates. Bai’s (1998) testing procedure has fairly general applicability even
though it is restricted to the case of strictly increasing distribution functions due to the
need for obtaining uniformly distributed random variates by transformation. Apart from
this restriction, Bai’s (1998) testing procedure, although complicated, has effectively solved
the long-standing problem of unknown parameter values for the EDF tests.

Our test differs from the EDF tests in an important way. Our method is highly parametric
and relies on the standard asymptotic likelihood ratio test. When testing a distributional
assumption either in static or dynamic models, a parametric specification of the distribution
function under the null hypothesis is automatically provided. If a generic suitable alternative
class of distribution functions can be identified, then the testing problem becomes rather
straightforward. This is indeed what our testing approach is all about. We show that for an
arbitrary probability distribution (either discrete or continuous), we can construct a class
of alternative distribution functions that wrap around the distribution function under the
null hypothesis. Our construction relies on the principle of minimum relative entropy and
employs some design instruments. Since the likelihood ratio test is known to be a uniformly
most powerful test (asymptotically), our test is expected to be more powerful than the EDF
tests.

We show in the paper how easily such a test of the distributional assumption can be
constructed. Specifically, we identify a set of design instruments and use them to construct
a minimum relative entropy probability density function around the density function under
the null hypothesis. The choice of the design instrument(s) only depends on the density
under the null hypothesis. We demonstrate by a simulation study that the KS and Andersen-
Darling tests for normality are dominated by our test (in terms of power of rejection) by
a wide margin. We apply this testing procedure to stock index returns in the GARCH
model setting. The commonly used conditional distribution functions such as Student’s ¢
and exponential power distributions (even after allowing for asymmetry as in Ferndndez and
Steel, 1998) are found to be inadequate for this financial data series. Moreover, we have
conducted a simulation analysis to ascertain that the relative entropy goodness-of-fit test
has the right size and sufficient power in a dynamic location-scale model setting. Although
the discussion of this paper is mainly confined to testing the probability density function,
tests for discrete distribution functions can be equally easy to construct.

The balance of the paper is organized as follows. Section 2 provides a brief overview of the
theory about minimum relative entropy distribution. The procedures and some asymptotic
properties for constructing the relative entropy goodness-of-fit test are given in Section 3.
Section 4 discusses the application of the relative entropy goodness-of-fit test to location-
scale models. Simulation results for comparing the performance of classical EDF tests and
the relative entropy goodness-of-fit test are also reported. The application to financial data is
presented in Section 5 where a simulation study is also provided. Finally, Section 6 concludes.



2 Minimum relative entropy distribution - a brief re-
view

The study of entropy can be dated back to Shannon (1948) and Jaynes (1957a & b). Shannon
(1948) defined the entropy associated with the probability density function p(z) as

By =~ [ pla)ln pla)d. &
Using an axiomatic approach, Shannon (1948) justified why entropy is a measure of un-
certainty associated with a probability distribution. As advocated in Shannon (1948) and
Jaynes (1957a & b) the principle of maximum entropy favors a probability distribution with
a higher entropy because it represents a higher uncertainty or greater disorder. If partial in-
formation is available, the principle calls for choosing a p(x) by maximizing the entropy in (1)
subject to the constraints implied by the information. The resulting probability distribution
is called the maximum entropy distribution (MED).

The principle of maximum entropy was generalized by Kullback and Leibler (1951) into
that of relative entropy, sometimes referred to as the Kullback-Leibler distance, which mea-
sures the distance between two probability density functions p(z) and ¢(z) by

> p(z)

D(p(x), () = / pla) n B (2)

Relative entropy is not a true distance function because it neither satisfies the triangular
inequality nor is a symmetric relationship. It, however, behaves somewhat like a distance
measure because D(p(z),q(x)) = 0 if and only if p(z) = ¢(x) and D(p(z), ¢(x)) > 0 for any
p(z) and q(x) (see Cover and Thomas (1991)).

The concept of relative entropy can be used to derive the minimum relative entropy
density (MRED). Suppose that one has a prior belief about the distribution, say, ¢(z), and
the true distribution must also satisfy a set of k¥ moment restrictions. It is thus natural to
seek for a probability density function p(z) that is closest to the prior probability density
function and satisfies the moment restrictions. In other words, the MRED is the one that
solves the following minimization problem:

min D(p(z), 4(7))

[e.e]

subject to / p(zr) de =1 and / gi(x)p(x)do=c¢;, i=1,--- k.

o0 —00

Using the Frechet derivative, the solution can be derived to be:

p(z; A, ) = gq(z)exp <)\0 + Z&gz(fﬂ)) , (3)

i=1

X = —In {/_00 q(z) exp (Z )\Z-gi(x)> d:r} : (4)

The MED can be viewed as a special case of the MRED by setting ¢(z) = 1, which is
analogous to using a non-informative uniform prior in Bayesian analysis.
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3 The relative entropy goodness-of-fit test

Our objective is to devise a generic testing procedure that can be used to test a given
distributional assumption in either static or dynamic model setting. The strategy is to use
the relative entropy concept to construct a class of alternative distributions around the null
distribution. Specifically, if g(x) is the null density function, the MRED, p(z; A1, -+, Ag),
described in the preceding section will represent the class of alternative distributions, subject
to the choice of k design instruments, {g;(z);i = 1,--- , k}. The principle guiding the choice
of design instruments will be discussed later.

3.1 Basic idea

For an i.7.d. sequence of data, we are interested in the following null hypothesis.
H, : The probability density function for y, is f°(y,;6).

The null probability density function is characterized by a parametric class of functions with
parameter 6. One main issue in testing a null hypothesis is the construction of a suitable
alternative hypothesis H;. In order to derive a nested test, a natural strategy is to choose
an alternative distribution containing the null distribution as a special case. For example,
if the null is a normal distribution, we can choose Student’s ¢ distribution as the alternative
in an attempt to discriminate Hy and H; by the kurtosis of the data.? Similarly, if the
null is an exponential distribution, a natural alternative would be the gamma distribution.
However, it is less obvious in deciding on an appropriate alternative distribution when the
null is rather complicated; for example, the asymmetric distributions in Ferndndez and
Steel (1998) and Theodossiou (1998). In this paper, we propose a generic way of obtaining a
suitable distribution as the alternative. Our choice of the alternative distribution is obtained
through the information-theoretic approach described in the previous section. Our general
form of the alternative probability density function is thus given by

fl(fl?;ea Al,oo ) = fO(fE;e) eXp (Ao + Z&%(@) ) (6)

=1

Ao = —In {/_Oo fO(x;0) exp (Z Az‘Qz’@)) dl‘} : (7)

This function is simply the MRED using the constraints defined by k restrictions on some
design instruments, g;(z):

/ gz<$)f1<flf, 97)\17' o 7)\k) dr = Ci, 1= 1, st ,kf. (8)

The function in the form of (6) was referred to as an augmented density with exponential
carrier function by Chesher and Smith (1997). Their approach was, however, not based on

2Strictly speaking, the use of Student’s ¢ distribution as the alternative in testing the null hypothesis
of normal distribution is problematic. This is because the null hypothesis corresponds to the case of infi-
nite degrees of freedom for Student’s ¢ distribution. Standard testing procedures typically require the null
hypothesis to reside in the interior of the parameter set defined for the alternative hypothesis.



the minimum relative entropy principle, and the augmented density function was intended
for testing moment restrictions via the use of the likelihood ratio test.

Our generic construction of the alternative distribution gives rise to a natural nested test
based on the likelihood ratio principle. In practice, we only need to compute the maximum
likelihood estimates of the unknown parameters under Hy (A = --- = Ay = 0) and H;.
Depending on the number of restrictions used in the construction, the likelihood ratio test
statistic (two times the difference in the log-likelihood functional values under H; and Hy)
is distributed asymptotically as x%(k) under Hy with k being its degrees of freedom. One
can also apply Bartlett adjustments (see Barndorff-Nielsen and Cox (1984)) to the likelihood
ratio test to yield a better x?(k) approximation of the test statistic when the sample is small.

Under Hy, the distribution of y; has the form given in (6). Let Y = (y1, -+ ,y,)". The
log-likelihood function under Hy is Lo(Y;60) = > 1 In f%(y;; 0), whereas the log-likelihood
function under H; is

n k n
Li(Y:0, A, M) = Zln FO(y;0) +nXo + Z A (Z gi(yt)> . 9)
t=1 i=1 t=1

Recall that Ay is not a free parameter and must satisfy equation (7). Differentiating
Li(Y;0, A1, -+, \g) with respect to 6 and )\; yields the following system of likelihood equa-
tions:

OLi (Y0, M, M) ¢ 1 0f%ys0) oo
a0 - ; s o0 s 0 (10)
8L1(Y70a )\1a"' 7>\k) o 8)\O - - .
o = "o +;gl(yt)—0, i=1,..,k. (11)
Using equation (7), we have
| % TP Dy o)

| a@f o e = 23w (13)

o0

Note that the right-hand side of equation (13) is the sample counterpart of the moment
restriction of the k-th design instrument. Not surprisingly, the maximum likelihood estimates
for \;’s are the ones that solve the empirical counterparts of the restrictions on the design
instruments. Actually, no prior knowledge on the values of ¢;’s is needed. This is because
¢;’s have been reparameterized and replaced with A;’s. The result in (13) is thus expected.
If the null distribution is the true data generating distribution, the restrictions in (13)
would make \; ~ 0 fori = 1,--- | k. On the other hand, if H, is wrong, the values of \;’s need
to differ significantly from zero to make (13) hold, and the departure causes a rejection of the
null hypothesis. The values for # and )\;’s can be obtained by numerically solving equations
(12), (13) and (7). The integration involved in these equations requires a numerical solution.

3.2 Choice of design instruments

The specific choice of design instruments is crucial in setting up the test. If g;(x) are selected
in such a way that f!(x;0, A, -+, \x) defines the same parametric distribution as f°(z;0),
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one will encounter the problem that f!(z;60,\;,---, ) is not uniquely defined by a single
set of parameters, i.e., lack of identification. For example, consider the normal density as

the null, i.e.,
1 (v — u)2)
=—— exp | —— 1), 14
o (- (14)

Using = and 22 as the design instruments implies that the alternative density is

fo(@in,0%)

1 _ 2
fl(l.;,u’70-27)‘17)‘2) = \/%0_ exXp <_%+)‘0+)‘11‘+)\2£2) ) (15)

which again defines a normal distribution. An identifiability problem arises because four
parameters are used to define a two-parameter normal distribution. In general, if the null
distribution is from the exponential family, then any linear combination of the sufficient
statistics should not be used as design instruments.

The identifiability requirement is still not sufficient for choosing design instruments.
Again consider the normal density as the null. If one wants to detect the departure from
Hy using the skewness and kurtosis of the true distribution, it appears natural to select

k = 2 with gi(z) = 2% and go(z) = 2%.> But such a choice may lead to problems. Since the
1

alternative density function becomes o exp(— (:C2_(7 ’3)2 + o+ N2+ )\Qm4), the tail behavior
of the alternative probability density function is governed by exp(Ax?). This leading term
becomes explosive if A\ > 0, which, of course, cannot even qualify as a distribution function.
If one constrains s to be non-positive, the testing problem becomes a test of parameter
value at the boundary, i.e., Ay = 0, which is a situation that the standard likelihood ratio
test becomes invalid. Another problem is of numerical nature. If A\ is tentatively positive
in the iterative numerical solution process, the norming constant approaches infinity and
causes a breakdown of the numerical procedure. Using 2% and z* as the design instruments
for testing normality is not desirable even if Ay < 0, because the alternative density function
can only to have normal or thin tails.

Although the choice of g;(z) appears arbitrary, some general rules do apply. These
general rules are fairly intuitive and practical. Essentially, these rules depend on the null
distribution employed and the direction of departure in which one is interested. If one is
interested in detecting excess kurtosis, then it is advisable to set k = 1 and use g;(x) = |z|'
or gi(x) = In(1 + z?). The first g;(z) is motivated by the exponential power distribution
described in Box and Tiao (1992), whereas the second ¢ (z) is guided by the ¢ distribution.
If one is interested in both skewness and excess kurtosis, then it is natural to consider k = 2
with gi(x) = (z7) and go(z) = (z7)'°, where 7 = max(z,0) and 2~ = max(—x,0) are
the positive and negative parts of x, respectively. Suppose that one wants to test departure
from the ¢ distribution. It is natural to use the design instrument g, (z) = |z|!® as opposed to
g1(z) = In(1+2?) because the latter one will generate a t-distribution like alternative density
function. By the same token, to test departure from the exponential power distribution, one
should consider g;(x) = In(1 + 2?) instead of g;(x) = |z|*°. In short, the choice of design
instruments is related to the characteristics of the null density function.

3Zellner and Highfield (1988) had previously applied a similar idea to use the first four moments to
determine the maximum entropy distribution as an approximation to the marginal posterior distribution.



3.3 Asymptotic properties

To yield the asymptotic x?(k) distribution for the likelihood ratio test statistic, some regu-
larity conditions (see Serfling (1980), pages 144-145 and Lehmann (1999), page 501) need to
be satisfied. The most crucial one is the boundedness condition:

i)
96,006,00.

for all x, where 3 = (€', A\, ..., \¢)’ is the vector of parameters in the alternative distribution,
Bas By B, are any elements of § and E[H(z)] < oo.

To ensure that the boundedness condition is met, we use the truncated design instruments
in the following form:

< H(z) (16)

gi(cr) if x < ¢
gi(x) =19 g(z) fa<z<c, (17)
gilcu) ifz>ecy

where g;(z) is any continuous real-valued function. The values for ¢; and ¢, can be set to
have sufficient range of coverage by g;(x). The boundedness condition in (16) is satisfied if
the truncated design instruments are used and the following conditions, exclusively on the
null distribution function, are imposed:

09 (x:6) /00, 029z 0) /00,06,
2| BT 0 6) ’
0% £ (1 0) /00,06,06. 0 In f9(x: 6)
FE fo(:]j’ 9) o0, and F W < 0 (18)

for any parameters 6,, 6, and 6. in f°(z;0). The technical details are available from the
authors upon request. Besides providing the theoretical foundation of applying asymptotic y?
percentiles in the relative entropy goodness-of-fit test, the use of truncated design instruments
actually help solve the numerical problem described in Section 3.2. Furthermore, truncation
removes the non-positivity restriction on \; so that the standard likelihood ratio test can be
applied without worrying about the boundary value problem.

4 Application to location-scale models

In location-scale models, the null hypothesis for the distribution specification can be formu-
lated as

1 _
Hy : The probability density function for y; is — fo(u; 0).
o o

The null probability density function is characterized by a parametric class of functions with
parameters u, o and 0. This density function is constructed, without loss of generality, from a
standardized density function, f°(x;#), whose location and scale parameters are constrained
to be 0 and 1, respectively. Naturally, the density function applies to the data sample under
the null hypothesis will be the one restored with the location parameter ;1 and the scale
parameter o.



4.1 Detailed procedure

We rely on the MRED construction described in the preceding section to construct the
distribution for y; under the alternative hypothesis. Specifically, the alternative probability
density relative to fO(z;0) is

P30, M, A) = fO(2;0) exp (Ao +) Az-gi(x)) : (19)

i=1

Since p(x; 0, A1, - - -, A\x) need not belong to the class of distributions with mean 0 and variance
1, we need to standardize the density function. A standard variable transformation yields
the following alternative density function suitable for #=£:

fl(‘r;ea )\17 e 7)\16) = (I)Q p<(I)1 + (IJQxa 97 )\17 e 7)\k)7 (20)

where

o, = / xp(z; 0, A1, , A\ )dx, Dy = \// 22p(x;0, M1, A )dx — DI (21)

o0 —00

Note that this alternative density function only has k£ more parameters because Ay is a
norming constant. If \; = Xy = -+ = A\, = 0, then fY(z;0, A\, -+, \x) = fO(z;0). A
specification test can now be constructed using the standard asymptotic likelihood ratio
test:

2 [Ll(Yaéa 5‘1, ) j\ka ,&’7 6-) - LO(Yvéa p” 6)i| ~ X2(k)7 (22)

where Lo(Y;0, fi,5) is the maximum value of the log-likelihood function under the null hy-
pothesis with

Lo(Y:0, p,0) = zn: [111 e (yt 1 9) —In a] , (23)

g
t=1

and [, (Y;é, A,y ,5\k, f1,0) is the maximum value of the log-likelihood function under the
alternative hypothesis with

n

LY, M, Aty 0) = [mfl (ytf:“;e, A, - - ,)\k> —lna} . (24)

t=1

For a given null probability density function and a set of design instruments, we can
numerically obtain the maximum likelihood estimates under both the null and alternative
hypotheses. Recall that the design instruments need to undergo truncation as described in
equation (17) so that potential numerical problems can be avoided and the test does not
have to deal with the boundary value problem. In location-scale models, we can set ¢, = —m
and ¢, = m in the truncation operation. Since the null density function f°(z;#) has already
been normalized to have mean 0 and variance 1, truncating at —m and m corresponds to
using the range of m standard deviations from the mean of y;. The specific value of m
affects the power of the proposed test. This is not surprising because a very small m does
not permit the density function under the alternative hypothesis to differ in any meaningful
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way from the density function under the null hypothesis. Therefore, it is important to choose
m so that the interval (¢, ¢,) = (—m,m) has a reasonably high coverage probability under
fO(x;0). If the null distribution is parameter-free, this can be determined fairly easily. For
example, in testing for normality where f°(z;0) is standard normal, the choice of m = 2
has a coverage probability of around 95%. Even if there is unknown parameter in the
standardized null density, a suitable choice of m can usually be obtained by referring to
the nature of the density function under the null hypothesis. For later tests of fat-tailed
distributions in dynamic models, we set m = 8 to ensure sufficient coverage. Indeed, this
choice of m implies a coverage probability of more than 99% for standardized ¢ distribution
with degrees of freedom as small as 3. In practice, one can use an arbitrary large m as long
as no numerical problem is created. The power sensitivity to the value of m will be examined
later.

4.2 Power analysis

We now conduct a simulation study to compare the power of the KS and Anderson-Darling
tests with that of our testing procedure. We choose these two particular EDF tests because
both are common normality tests with the Anderson-Darling test being known to be more
powerful in detecting discrepancy in the tails (Stephens, 1974). In this study, we take
Student’s ¢ distribution as the true distribution and test to see how frequently the null
hypothesis of normal distribution can be rejected by different tests. We vary the degrees
of freedom for Student’s ¢ distribution in generating the data sets but always fix the mean
and variance at zero and one. We perform the test assuming no knowledge of the mean and
variance. The critical values for the MRED test is based on the y?(k) percentiles and those
for the KS and Anderson-Darling tests are taken from Table 4.7 of Stephens (1986, page
123).

For the simulation study, we report the results using only one design instrument, i.e.,
k = 1, but repeat for two different design instruments. For the first case, g;(z) = |z|*5 and
for the second g;(z) = In(1 + 2?). We pick these two design instruments for the reasons
provided earlier in Section 3.2. For the results reported in Figures la - 1d, we have set
m = 2; that is, ¢, = —2 and ¢, = 2. The power functions in these figures were calculated
using 10,000 Monte Carlo repetitions for each scenario. We consider two sample sizes: 100
and 500 and two sizes of test: 5% and 10%. The horizontal axis is the inverse of the degrees
of freedom of Student’s ¢ distribution and the vertical axis is the rejection rate. A horizontal
value of zero represents an infinite degrees of freedom, i.e., normality. The rejection rate in
this case thus reflects the size of the test. Our results suggest that the simulated sizes are
very close to their theoretical values. The power functions clearly indicate that the relative
entropy goodness-of-fit test has a better power in comparison to the KS and Anderson-
Darling tests. From Figure 1, the superior performance of the entropy goodness-of-fit test is
clear for both sample sizes. Furthermore, there does not exist a noticeable difference between
the two specific design instruments when the sample size is 500.

In the power analysis, we have used m = 2 to truncate the design instruments. Recall
that m actually represents the coverage from minus m to positive m standard deviations
for location-scale models. Although m only needs to be finite theoretically, its value may
affect the performance of our relative entropy goodness-of-fit test. We now examine how
sensitive the simulation results are to the choice of m and report the results in Table 1
using 10, 000 repetitions. We consider the sample size of 100. For either design instrument

10



analyzed and for either 5% or 10% test, the power of the goodness-of-fit test does not appear
to be materially affected by the choice of m. In other words, the actual value of m is not
particularly important as long as its value provides, say, one standard deviation coverage on
either side of the mean.

5 An application to financial data

In this section, we implement the relative entropy goodness-of-fit test on the S&P 500 index
return. Daily closing values from the first business day of 1989 to the last day of 1998 are
obtained from Datastream. We then construct the continuously compounded return series
(scaled up by a factor of 100). Specifically, v = 100 x In(S;/S;—1), where S; is the index
value at time t. The model employed is a variant of the popular dynamic location-scale
model known as the non-linear asymmetric GARCH (NGARCH) process proposed by Engle
and Ng (1993):

Y = H+ 60+ oy, e ~ D(0,1), (25)
o7 = By+B107 1+ By0; (61— €)%, (26)

where {¢;t =1,2,---} are i.i.d. random variables and D(0, 1) denotes a distribution with
mean zero and variance one. The usual NGARCH model parameter restrictions 3, > 0, 3; >
0,85 > 0,8, + B5(1+c?) < 1 are imposed to ensure that the conditional variance is positive
and stationary variance exists.

Two commonly used conditional distributions in modeling financial data series are Stu-
dent’s ¢ distribution advocated by Bollerslev (1987) and the exponential power distribution
(EPD) (also known as generalized error distribution) by Nelson (1991). The choice of either
Student’s t or the EPD is typically justified by testing the null hypothesis of conditional nor-
mality. To our knowledge, there has been no formal analysis in the literature, except that of
Bai (1998), of treating Student’s ¢ or the EPD as the null hypothesis.* In other words, such
a popular practice in the empirical finance literature has not been rigorously scrutinized. In
light of the above, we considered Student’s ¢ distribution and EPD as the null hypothesis.
Since the normal distribution is their special case, we have effectively include the normal
distribution in our study.

Let the null distribution with mean 0 and variance 1 be denoted by f°(e;6), where
0 represents parameter(s) other than mean and variance. The null hypothesis under our
dynamic location-scale model can be formulated as

Hy : The probability density function of ¢ is f° (¢;6) .

In order to perform the relative entropy goodness-of-fit test on the conditional distri-
bution assumption, we need to choose the design instrument(s), g;(x). Since Student’s ¢
distribution and the EPD are two competing fat-tailed distributions, we can select g;(x) by
taking advantage of our knowledge on the nature of these two density functions. Consider

4In Bai (1998), Student’s ¢ distribution was assumed to have a known degrees of freedom, and specifically
the value was set equal to 5. Such an assumption is clearly not a realistic scenario for applications. In
principle, Bai’s (1998) procedure can deal with the case of unknown degrees of freedom by properly con-
structing a martingale transformation. We can only guess that he made such a restriction for the purpose
of demonstration.
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first the case of using only one design instrument, i.e., k = 1. We use g;(z) = |z|'® if the
null hypothesis is Student’s ¢ distribution because it produces an alternative density with
the EPD-like feature (with the degrees of freedom being fixed at 1.5). If the null hypothesis
is the EPD, we use ¢;(z) = In(1 + 2?) to produce an alternative density with Student’s ¢-like
feature. Such choices are natural and likely to have a higher power in discriminating between
the null and alternative hypotheses. For k = 2, we set g;(x) = (z*)%and go(z) = (™)' if
the null hypothesis is Student’s ¢ distribution. Similarly, we set g;(z) = In(1 + (z7)?) and
g2(z) = In(1 + (27)?) if the null hypothesis is the EPD. Utilizing both z* and ™ in formu-
lating the test enables us to detect departure from the null distribution due to asymmetry.
In other words, it is a simple device to detect skewness.

The test results for the S&P 500 index return data are presented in Table 2. For k = 1,
Student’s t distribution is not rejected at the 5% level, whereas the EPD is rejected at the
5% level. If we use k = 2, Student’s t distribution is also rejected at the 5% level. Since
Student’s ¢ distribution is not rejected under k£ = 1, but rejected under k£ = 2, the results
suggest that rejection may simply be due to asymmetry in the conditional distribution. This
issue is further examined below.

Since there is evidence of asymmetry in the conditional distribution, we modify the null
distributions to allow for some degree of skewness. Following Ferndndez and Steel (1998), we
construct the skewed version of the probability density function for Student’s ¢ distribution
and EPD. Their construction introduces an extra parameter v that enables the conditional
distribution to exhibit asymmetry. We repeat the relative entropy goodness-of-fit test for
the asymmetric versions of the two null distributions. The results in the second panel of
Table 2 indicate that neither the asymmetric ¢ distribution nor asymmetric EPD is suitable
for this index return series. Allowing for asymmetry in the form of Ferndndez and Steel
(1998) cannot change the result of rejection when two design instruments are used to detect
potential asymmetry.

We conduct a simulation study to gain some insights about the power of the relative
entropy goodness-of-fit test in the setting of the NGARCH model. The parameter values
for p, By, By, 85 and c in (25) and (26) are assumed to be 0.045,0.013,0.903,0.053 and 0.756
respectively. These values are the parameter estimates obtained from applying the NGARCH
model with the conditional normal distribution to the S&P 500 index return series from 1989
to 1998. We have removed parameter 6 from this simulation study because its estimate is
found to be statistically insignificant, and removing one parameter speeds up considerably
our computer intensive simulation study. Since the parameter values associated with the
GARCH model are fairly typical values found in empirical finance literature, we fix them in
all simulations but treat them as unknown parameters. In other words, our focus is on the
effect caused by different parameter values of the true conditional distribution and by the
null hypothesis employed.

We simulate 500 data series each with 1000 and 3000 observations using the EPD and
t conditional distributions. The EPD’s degrees of freedom is set at 1.1,1.2,1.3,1.5 and 2,
whereas the degrees of freedom for the t distribution is set at 4,5,6,7 and oco. The choice of
these parameter values reflects the range reported in our empirical analysis of the real data
in the preceding section. We include the case of 2 for the EPD and oo for the ¢ distribution
because they correspond to the normality assumption. In the simulation study, we only assess
the performance of using one design instrument. The choice of this function depends on the
null hypothesis as described in the preceding section of empirical analysis. We consider two
significance levels («): 5% and 10%. The rejection rates under various scenarios are reported
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in two panels of Table 3.

The first panel corresponds to the case of the true distribution function being the EPD
for different degrees of freedom. When the null hypothesis is the EPD, the rejection rate
should approximately equal the size of the test. The results in the case of 1000 observations
indicate that the simulated sizes are slightly off for both o = 5% and 10%. If the sample
size is increased to 3000, the simulated sizes generally improve. When the null hypothesis is
the t distribution, the rejection rate reflects the power of our relative entropy goodness-of-fit
test. The results suggest that the smaller the degrees of freedom of the true distribution,
the higher is the power of the test. Furthermore, the larger the sample size, the higher is
the power. These properties are hardly surprising.

Notice that the true distribution implied by the EPD assumption becomes a normal
distribution in the case of the parameter value equal to 2. The null hypothesis of ¢ distribution
thus contains the true distribution. In other words, the rejection rate in this case will again
reflect the size of the test, and is thus omitted from the table.

The results for the case that the true distribution is Student’s ¢ are reported in the second
panel of Table 3. When the null hypothesis is the ¢ distribution, the rejection rate reflects
the size (a) of the test. Our results in the case of 1000 observations show that they are close
to their respective nominal values of 5% and 10%. When the sample size is increased to 3000,
the simulated sizes again improve. Similar to the earlier result, a smaller degrees of freedom
leads to a higher rejection rate when the null hypothesis is not the true distribution. A larger
sample size increases the power of the test. Although the relative entropy goodness-of-fit
test relies on the asymptotic distribution, these results indicate that for the sample size of
1000, the test has already performed reasonably well for a nonlinear time series model like
the NGARCH process. Given that a sample size of 1000 or more is fairly typical for financial
data, the proposed test is indeed a practical device. As indicated by the rejection rates in
Table 3, the power of the relative entropy goodness-of-fit test is very high. In short, the two
different fat-tailed distributions can be easily differentiated.

6 Conclusion

We have devised a simple parametric goodness-of-fit test that can be used to examine whether
a given distributional assumption is compatible with the data sample. Our test utilizes the
concept of minimum relative entropy to construct a suitable class of alternative distributions
around the distribution function under the null hypothesis. In our construction, a natural
set of design instruments is used in obtaining the minimum relative entropy distribution, and
the choice of design instruments only depends on the nature of the distribution under the null
hypothesis and the direction of departure of interest. The relative entropy goodness-of-fit
test is parametric and derived directly from the likelihood ratio test. It differs significantly
from the KS-type test that uses the empirical distribution as the alternative. As compared
with the KS-type test, our test is easier to implement and is shown by a simulation study to
have a higher power.

In terms of the methodological contribution, the relative entropy goodness-of-fit test
offers one simple solution to the long-standing problem of testing a distributional assumption
when a suitable class of alternative distributions is not readily available. From an application
perspective, distributional assumption always plays a critical role. A simple and powerful
testing procedure such as this can be immensely useful in discriminating among competing
models.
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Table 1. The power of testing normality using the relative entropy goodness-of-fit test
for different m. The sample size is 100.

Degrees of freedom of ¢ distribution

a 15 10 7 4
m =1
g1(z) = |z|*® 5% 0.121 0.196 0.345  0.725
gi(z) =In(1 +2?) 5% 0.123 0.200 0.348  0.729
g1(z) = |z|*® 10% 0.190 0.277 0.434  0.786
gi(x) =In(1 +2?) 10% 0.192 0.278 0.436  0.787
m=3
gi1(z) = |z|*® 5% 0.095 0.158 0.293  0.675
gi(x) =In(1 +2*) 5% 0.113 0.201 0.349  0.719
g1(z) = |z|*® 10% 0.178 0.265 0.421  0.780
gi1(x) =In(1 + %) 10% 0.196 0.301 0.461  0.802
m =4
g1(z) = |z|*® 5% 0.110 0.185 0.331  0.715
gi(x) =In(1 +2?) 5% 0.113 0.201 0.349  0.720
g1(z) = |z|*® 10% 0.191 0.285 0.447  0.798
gi1(x) =In(1 + %) 10% 0.196 0.303 0.463  0.803

Table 2. Test results for the S&P500 daily return under different null conditional dis-
tributions in the NGARCH(1,1) model. The alternative probability density is the minimum
relative entropy density (MRED) constructed around the null density function using k design
instruments.

Distribution log-likelihood LRT statistic p-value

Symmetric null

Null: t -2848.77
MRED: t with k=1 -2848.73 0.08 0.7757
t with k = 2 -2844.67 8.20 0.0165

Null: EPD -2859.96
MRED: EPD with £k =1 -2850.11 19.70 0.0000
EPD with k£ =2 -2847.64 24.64 0.0000

Asymmetric null

Null: Asy. t -2847.70
MRED: Asy. t with k=1 -2847.69 0.01 0.9392
Asy. t with k =2 -2838.52 18.35 0.0001

Null: Asy. EPD -2857.41
MRED: Asy. EPD with & =1 -2847.04 20.75 0.0000
Asy. EPD with k = 2 -2838.84 37.13 0.0000
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Table 3. Power of the relative entropy goodness-of-fit test (with one design instrument).
The numbers are the rejection rates in 500 repetitions under two true conditional distribu-
tions: EPD (the first panel) and ¢ (the second panel) with different degrees of freedom.

Degrees of freedom for EPD

Null distribution  « 2 1.5 1.3 1.2 1.1
n = 1000
EPD 5% 0.080 0.074 0.070 0.066 0.060
10% 0.140 0.134 0.128 0.120 0.126
t 5% 0.328 0.592 0.734 0.832
10% 0.506 0.770 0.864 0.890
n = 3000
EPD 5% 0.072 0.064 0.074 0.080 0.078
10% 0.128 0.108 0.108 0.116 0.112
t 5% 0.878 0.988 0.994 0.978
10% 0.934 0.998 0.996 0.978
Degrees of freedom for ¢
Null distribution  « 00 7 6 5 4
n = 1000
EPD 5% 0.548 0.656 0.782 0.896
10% 0.670 0.760 0.870 0.932
t 5% 0.072 0.068 0.058 0.058 0.064
10% 0.130 0.134 0.124 0.124 0.142
n = 3000
EPD 5% 0.952 0.984 0.994 0.998
10% 0.978 0.992 0.994 0.998
t 5% 0.036 0.064 0.066 0.064 0.054

10% 0.082 0.122 0.120 0.118 0.104
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(a) n=100, alpha=5% (b) n=100, alpha=10%
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Figure 1. Power curve for the tests of normality based on 10,000 Monte Carlo repetitions:

-=-, Kolmogorov-Smirnov test;-a- , Anderson-Darling tes#— , MRED tgft) & [x|*°; —, MRED test, gx) = In (1+ ).
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