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Abstract

This paper develops a nonparametric option pricing theory and numerical method
for European, American and path-dependent derivatives. In contrast to the nonpara-
metric curve fitting techniques commonly seen in the literature, this nonparametric
pricing theory is more in line with the canonical valuation method developed Stutzer
(1996) for pricing options with only a sample of asset returns. Unlike the canonical
valuation method, however, our nonparametric pricing theory characterizes the asset
price behavior period-by-period and hence is able to price European, American and
path-dependent derivatives. This nonparametric theory relies on transformation to
normality and can deal with asset returns that are either i.i.d. or dynamic. Applica-
tions to simulated and real data are provided and implications discussed.
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1 Introduction

Nonparametric techniques in typical option pricing applications use a sample of option
prices to calibrate the relationship between the option price and the underlying asset price.
Hutchinson, et al (1994), Derman and Kani (1994), Rubinstein (1994), Ait-Sahalia and Lo
(1995), Buchen and Kelly (1996), Jackwerth and Rubinstein (1996), Jacquier and Jarrow
(2000), Broadie, et al (2000) and Garcia and Gencay (2001) are some examples. In a nutshell,
these papers apply sophisticated curve fitting techniques to hopefully extract the true option
pricing function from the observed option prices and the underlying asset value. Some of
these approaches are limited in the sense that a large amount of data is needed, for example,
Ait-Sahalia and Lo (1995), and they are subject to the so-called curse of dimensionality.
Others, such as Buchen and Kelly (1996) are limited in their applicability to one maturity
at a time because the nonparametric risk-neutral distributions can only be identified sepa-
rately for different maturities. Consequently, they are not suitable for interpolation across
maturity. Most of them cannot be used to price the derivative contracts that are not already
covered in the data set in terms of contract features, because these methods are essentially
interpolation devices. In other words, one cannot calibrate the model to European option
data over a particular strike price range and hope to price an option with a strike price out-
side the range or to price path-dependent derivatives such as barrier options. For those can
be used to extrapolate such as Derman and Kani (1994), Rubinstein (1994) and Jackwerth
and Rubinstein (1996), the pricing system are too constrained to capture some important
option price features. A common feature of these valuation approaches is the need to have
some option data in order to implement the models.

The only nonparametric option pricing model that can value options solely based upon a
sample of the underlying asset prices is, to our knowledge, the canonical valuation method of
Stutzer (1996). It derives a risk-neutral distribution using the relative entropy principle. The
risk-neutral distribution is a distribution function closest to the empirical distribution for the
gross return over the maturity of interest subject to the condition that the expected return
equals the risk-free rate. The canonical valuation method cannot deal with early exercise,
however. This means that American style options cannot be priced using this method. The
reason is that the canonical valuation method is silent on the period-by-period risk-neutral
price dynamic. For the same reason, the canonical valuation method cannot be used to price
path-dependent derivatives.

In a spirit similar to the canonical valuation method of Stutzer (1996), we develop a
nonparametric option pricing theory which establishes the pricing relationship solely based
upon the price data of the underlying asset without resorting to option prices. This non-
parametric option pricing theory is not another curve fitting technique because it formalizes
the risk-neutralization process so that one can infer directly from the price dynamic of the
underlying asset to establish the risk-neutral pricing dynamic. The typical nonparametric
option pricing technique requires of calibration of the model to option data. But the non-



parametric pricing theory proposed in this paper does not need to be calibrated to option
data. This feature has a key advantage because one can price derivatives for which no com-
parable contingent claims are traded and the theory can also be subject to a direct test in
terms of its ability to price exchange traded options. Since the entire risk-neutral pricing
dynamic is fully characterized, one can use the theory to price European, American and a
variety of path-dependent derivatives. It is in this regard that our nonparametric option
pricing theory differs from the canonical valuation method of Stutzer (1996).

Transforming one-period asset return to normality is a key step in constructing our
nonparametric option pricing theory. This transformation can be easily accomplished by first
applying the empirical distribution and then inverting it by the standard normal distribution
function. Applying the relative entropy principle with the condition that the expected asset
return equals the risk-free rate, one can derive the risk-neutral distribution for the normalized
asset return. This risk-neutral distribution turns out to be again the normal distribution but
with a mean shift to absorb the asset risk premium. We show that the nonparametric theory
is in a complete agreement with the Black-Scholes (1973) model if one assumes normality for
continuously compounded asset returns. For a dynamic asset return model such as GARCH,
we show that the nonparametric option pricing theory yields the same pricing conclusion as
the GARCH option pricing model of Duan (1995) when conditional normality is imposed.

Our nonparametric option pricing theory also differs from the canonical valuation method
of Stutzer (1996) in its ability to reflect the market condition. Directly applying past returns
to construct future returns as in the canonical valuation method inevitably fails to reflect
the important elements of market conditions. Consider, for example, using the canonical
valuation method to price one-month options on a particular day of high market volatility.
Suppose that a sample of 250 one-month past returns are constructed by shifting one day
backward at a time. The empirical distribution from this sample of overlapping one-month
past returns is unlikely to properly reflect what is likely to happen in the coming month
upon which the one-month options critically depend. A sample containing returns which
ran up to a high volatility state on the option valuation day is most likely to differ from the
return characteristics during the subsequent one-month period.

To operationalize an option pricing theory, one needs to develop numerical schemes for
pricing various kinds of derivatives. The nonparametric pricing theory developed in this
paper can be easily implemented using Monte Carlo method for pricing European and many
path-dependent derivatives. Recent advancements in the Monte Carlo method by Carriere
(1996), Tsitsiklis and van Roy (1999), Longstaff and Schwartz (2001), Rogers (2001) and
Andersen and Broadie (2001) make it possible to compute American options as well. For
lower-dimensional valuation problems, the Monte Carlo is less attractive, however. We thus
adapt the Markov chain method of Duan and Simonato (2001) to the nonparametric setting
in computing European and American style options. We favor the Markov chain method
because it is a more efficient numerical method for valuation problems which can be expressed
as a one- or two-dimensional Markov system. There are two cases examined in this paper.



The i.i.d. case constitutes a one-dimensional Markov system whereas the dynamic case can
be expressed as a two-dimensional Markov system.

Our results in the i.i.d. case show that the nonparametric pricing theory performs rea-
sonably well in the simulation environment when the data generating system is based on
the Black-Scholes model. For the S&P 500 index data, the nonparametric method is found
to produce volatility smile/smirk for short-maturity options. In other words, it reflects the
skewness and kurtosis properties of the real data. This is encouraging because the S&P
500 index options are known to exhibit this pattern. The decaying pattern of the produced
volatility smile/smirk over the maturity dimension is, however, inconsistent with our knowl-
edge about the S&P 500 index options. The implied volatility surface flattens out too fast
and lacks the complexity of observed volatility surface. Moreover, smile/smirk at short-
maturity does not appear to be as steep as one typically observes on the S&P 500 index
options.

Such a result is actually expected. Financial returns are known to exhibit clustering
stochastic volatilities. Empiricists often use GARCH processes to model them. In short, the
i.i.d. assumption, implicitly in many theoretical models, is incompatible with data. Since
our nonparametric pricing theory is not constrained by the i.i.d. assumption, we apply it to
the S&P 500 index data by adopting a GARCH process as the description of the dynamic
volatility structure. The results suggest that the implied volatility surface is indeed very
different in comparison to that under the i.i.d. assumption. The surface flattens out much
slower when maturity is increased. Even up to a maturity of six months, smile/smirk is still
clearly present. The smile/smirk pattern for shorter maturities is much steeper as compared
to that under the i.i.d. assumption. Qualitatively, these features are consistent with the
stylized facts associated with index options. Our nonparametric pricing model using the
dynamic volatility structure also distinguishes itself in terms of its ability to reflect the
prevailing market condition. We show the implied volatility surface responds in a significant
way to the level of market volatility at the time of option valuation. Although the general
surface decaying pattern is same, the smile/smirk pattern at shorter maturities is greatly
affected by the market condition.

2 The non-parametric option pricing theory

Consider a sequence of continuously compounded asset returns, denoted by {Ry;t = 1,2, - -}.
To develop an operational option pricing theory, there are two critical issues need to be
addressed. First, one must derive a corresponding risk-neutral distribution for R;, which is a
distribution function that can be used to price options as if economic agents were risk-neutral.
Second, one must come up with a scheme for computing values for European, American and
exotic derivatives. The first issue is the core of an option pricing theory whereas the second
has an important operational significance and usually requires numerical methods. We now



deal with the first issue and leave the second one to the next section.

Financial returns are well known to have some dynamic features. The most notable one is
the volatility clustering phenomenon. In other words, {R;;t = 1,2, ---} may be a stationary
ergodic sequence but need not be an independent one. In order to develop the nonparametric
option pricing theory we need to filter out the dynamic feature. Here we assume the dynamic
feature occurs only in the one-period conditional mean and variance of R;, denoted by p; and
o2. We further assume that they are functions of past asset returns. This further assumption
is needed because we want asset returns to form a self-determining stochastic system. Due
to the assumptions, {R%;’ﬂ;t =1,2,-- } forms an i.i.d. sequence.

Let G(+) be the distribution function of %“—t and assume it is a continuous distribution.

Define Z; = 7! (G (R%;’ﬂ where ®(-) stands for the standard normal distribution func-
tion. It can be verified straightforwardly that Z; is a standard normal random variable and
the transformed variables {Z;;t =1,2,---} form an i.i.d. sequence. We will refer to Z; as
the normalized asset return. The probability law governing R; (or Z;) is typically referred
to as the physical probability measure. In parametric models, G(+) is a function under the
physical measure and can usually be deduced from assuming a stochastic process for the
asset price dynamic. Since we deal with the valuation problem nonparametrically, G(-) will
be obtained via some nonparametric (or semiparametric) means. A concrete method will be
provided later in the paper.

Knowing that the risk-neutral distribution is not the same as the physical distribution,
it is natural to identify their differences. A key feature of the risk-neutral distribution is its
expected return equal to the risk-free rate. In principle, one can estimate the expected return
of the physical distribution which is typically different from the risk-free rate. It allows for at
most one degree of freedom in risk-neutralization if one is to completely characterize the risk-
neutral distribution. Other than the expected return condition, there is no a priori reason
for the risk-neutral distribution to deviate from the physical distribution. In other words, it
is natural to have a risk-neutral distribution that is as close to the physical distribution as
possible while satisfying the condition on its expected value. To operationalize this concept,
one can call upon the information theory to find the risk-neutral density function that
minimizes the so-called relative entropy subject to its expected value condition. It is well
known in information theory that the relative entropy principle can be justified axiomatically
and is consistent with Bayesian method of statistical inference. For option pricing, the notion
of relative entropy was previously utilized in Buchen and Kelly (1996) and Stutzer (1996),
among others. Specifically, we deal with the physical and risk-neutral density functions for
the normalized return and introduce one degree of freedom so that it can be used to match
the required expected return correctly. Note that the normalized return has a standard
normal density function, ¢(-). Using the relative entropy principle, the risk-neutral density



for the normalized return, Z;, is the solution to the following problem: for some value ¢,

[ f(x)
I}%lxr)l/oo f(z) lnmdz’ (1)

subject to /oo flz)dx = 1

/o:omf(m) dx = ¢.

Note that the subscript of ¢; is meant to reflect the fact that the risk-neutral density for the
one-period normalized return may be a function of time because of the potential dynamic
structure in the conditional mean and variance. Indeed, we will show later that the risk-
neutral density for the one-period normalized return is the same for all period if the mean
and variance are constant.

It is well known in the information theory that the above programming problem has the
solution in the form of

o(z) exp (M)
JZ% ¢(z) exp (Mz) d
= ¢z —A\). (2)

Note that the first condition of being a density function is satisfied by the above solution
and the value of )\; simply corresponds to a given value of ¢;. In other words, we might just
as well ignore ¢; and view the density function as parameterized by A;. The value of )\; is
of course determined by the fact that the risk-neutral density must give rise to an expected
asset return equal to the risk-free rate r (continuously compounded) minus the dividend
yield d (continuously compounded). That is, A} solves

/ " oxp [0G 7 (@(0)) + ] dlx — X)) da = exp(r — d). (3)

—0o0

f(x5 M)

Note that the above equation is due to Ry = 0;G™ (®(Z;))+pus so that term exp [0:G™1 (D () + ¢
is the one-period gross return of the asset. It can be shown that the left hand side of the
above equation is a monotonically increasing function of A7, which implies a unique solution
if the solution does exist. In general, the solution exists because the value of p; must be tied
to r in any sensible market equilibrium.

Using the transformation, the sequence of continuously compounded asset return can
be expressed as { Ryt =1,2,---} = {o,:G 1 (®(Z)) + ps;t = 1,2, - -} where Z; is the nor-
malized return and has the physical density function of ¢(z) and the risk-neutral density
function of ¢p(x — \f). Consequently, the risk-neutral asset value dynamic becomes

Sy = Si1exp [0,G7H (D(Z)) + (4)
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where Z,; is a normal random variable with mean A} and variance 1, which can be used to
value contracts contingent upon the path of S;. In short, we have succeeded in characterizing
the risk-neutralized valuation system in terms of the normalized return.

Example 1: the Black-Scholes option pricing model

This nonparametric option pricing theory is compatible with the celebrated Black-Scholes
(1973) model. We now substantiate this claim. Under the geometric Brownian motion
assumption, the one-period continuously compounded return has a normal distribution with
constant mean y and variance o2, which implies G(z) = @ () and G~ (®(Z;)) = Z;. Assume
d = 0. According to our nonparametric pricing theory, Z; has the risk-neutral density of
¢(z — \*) where by the condition in (3), A* satisfies

/o:o exp(ox + p)d(x — N*) dx = exp(r). (5)

It is obvious that A* will be a constant. Using the moment generating function of normal
random variable, we obtain

o2
u—r—l—y'
o

P (6)

By equation (4), the risk-neutral asset price dynamic becomes
St = Stfl exp (O'Zt + ,U,)

o2
= Si_1exp (r -y + 0€t> (7)

where ¢, = Z;, — \* is a standard normal random variable under the risk-neutral distribution.
This result is in a complete agreement with the Black-Scholes model.

In reality, one does not know whether the asset price dynamic is governed by a geometric
Brownian motion even if it were the case. What will happen if one applies our nonparametric
option pricing theory in this situation? In other words, how well will the nonparametric
option pricing theory perform if one only observes a sequence of realized returns generated
by a geometric Brownian motion yet without knowing so? This issue will be addressed after
we discuss a method of obtaining nonparametrically the function G(-).

Example 2: the GARCH option pricing model

Suppose we assume the asset return volatility follows a linear GARCH dynamic: o2 =
Bo + Bro2 | + Bo(Ri_1 — pe—1)?>. Moreover, the conditional mean has the form as u; =
r 4+ noy — %af and the conditional distribution is normal. Note that we have implicitly
assumed d = 0. Under these assumptions, G(z) = ® (z) and the condition in (3) implies
that A} solves

00 1
/OO exp(owr + 1 + noy — §af)¢(:v — A) dx = exp(r). (8)



By the moment generating function of the normal random variable, it becomes
exp(r +no, + Ajoy) = exp(r), (9)
which in turn implies A} = —n. The risk-neutral asset price dynamic becomes
Sy = Si_1exp (07 + )

o2
= S;_1exp (r — é + O’t€t> (10)

where ¢, = Z; + n is a standard normal random variable with respect to the risk-neutral
distribution and the volatility dynamic becomes

Uf = [o+ 510371 + Bo( Ry — Mt—l)Q
= [o+ 510371 + 520371(&71 - 77)2- (11)

Thus, the nonparametric option pricing theory yields a result agreeing with the GARCH
option pricing model of Duan (1995).

Duan (1999) assumes a parametric form for the conditional distribution to allow for
conditional leptokurtosis and derives an option pricing theory using an equilibrium argument
similar to Duan (1995). In contrast, the nonparametric option pricing theory does not require
any prior knowledge on the conditional distribution and uses the relative entropy principle
and transformation to normality as the basis for deriving the theory. In the next section,
we will implement a version of the GARCH model to real data without assuming any prior
knowledge on the conditional distribution.

3 Implementing algorithm for the nonparametric pric-
ing theory

In order to implement the nonparametric pricing theory, one must first obtain a nonpara-
metric (or semiparametric) distribution function for the continuously compounded return.
There are many ways of constructing a nonparametric distribution function from a sequence
of data. In this section, we consider a simple procedure of using the empirical distribution,
which we find it convenient for our purpose of option valuation. One important feature
required of the construction method is to be able to invert the distribution function quickly
because its inversion is required in identifying A\y. We will proceed with the i.i.d. case first
and later move on to the dynamic model.



3.1

I.I.D. case

This is a simpler case in terms of identifying the nonparametric distribution function as well
as for valuing derivatives numerically. We adopt the following procedure:

Step 1:

Step 2:

Step 3:

Identify the empirical distribution from a sample of one-period continuously com-
pounded asset returns {R;;i = 1,---N}. We first compute the sample mean and
standard deviation, denoted by 7@ and &, respectively. The empirical distribution
function for a sample, R = {@;i = 1,--- N}, is formally defined as @(w;R) =
L3N 1{£E < 2} where 1{-} is an indicator function giving a value of 1 if the con-
dition is true and 0 otherwise. Note that C:’(m, R) is actually a step function and is
not invertible. The empirical distribution is also subject to sampling variation and has
a bounded support. It is therefore preferable to use a smoothed version, denoted by
G(x; C:)), to make it invertible, to dampen out the sampling fluctuation and to allow
for the possibility of having an infinite support. The particular smoothing technique
used in this paper is described in Appendix. Figures la and 1b show the empirical
distribution and its smoothed version for the simulated samples with 252 and 1260
standard normal random variates. The functions for the S&P 500 index return data
sample are given in Figure lc.

Solve for A* numerically in

/O:o exp [06"1 (q)(x); (:)) + u} o(x — X*) dz = exp(r — d). (12)

We use a bisection search to find A* where the integral is evaluated numerically and
®(x) is evaluated using the standard polynomial approximation formula. Note that p
and o do not need to share the same values as 7 and @. One may want to use, for
example, two years worth of past return data to come up with G(z; (:)) but decide to use
other value of p and o for the future to better reflect the new market conditions. This
can be justified if, for example, the interest rate has gone up substantially relative to the
interest rates during the period the sample is taken. The future expected continuously
compounded return p need to reflect the new level of interest rates even if one keeps
the same volatility level. One can, for example, use a value of y equal to the sum of
the new interest rate and the historical risk premium minus the anticipated dividend
yield for the period to come.

Choose a numerical scheme to generate the asset price until the maturity of the con-
tingent contract according to the following system:

Sy = S;_1exp [O’G_l ((I)(Zt); @) + ,u} (13)



where Z; is a sequence of independent normal random variables with mean A* and
variance 1. Then compute the expected value of the contingent payoff. For example,
one may use Monte Carlo simulation to perform this task. In this paper, we will use
the Markov chain method for the valuation task because it is a more efficient algorithm
and can be used for European and American style derivatives. The technical details
are given in Appendix.

We consider two examples. First, we implement the nonparametric pricing technique
using the artificial data sets generated according to a geometric Browning motion. We then
implement the method on the real data set of the S&P 500 index returns. In the first
case, we assess the values for a set of European call options using the nonparametric pricing
technique for each of the simulated data sets. As a comparison, we apply the Black-Scholes
model to the same data sets to obtain the corresponding pricing results. The comparison in
this case is to assess how well the Black-Scholes theoretical values can be uncovered by our
nonparametric method. In the case of real data, we compute option values using both our
nonparametric pricing technique and the Black-Scholes model. This comparison sheds light
on the consequence of assuming normality for the real data that are known to be negatively
skewed and fat-tailed. In addition to European calls, we also compute American puts to
demonstrate that our nonparametric method is applicable to derivatives with early exercise
possibilities.

To simulate the data according to the geometric Brownian motion, we assume pu = 0.1
and o = 0.15 (annualized). We also assume d = 0 and r = 0.05 in the simulation study.
The nonparametric method is subject to sampling errors in a way similar to implementing
the Black-Scholes model with the estimated sample standard deviation. We consider two
sample sizes: 1 year (252 days) and 5 years (1260 days). Note that the parameters need to be
converted to the ones suitable for daily frequency because one trading day is regarded as the
length of one period in this analysis. The statistics on mean, median, standard deviation,
maximum and minimum are calculated using 200 Monte Carlo repetitions. The results are
summarized in Tables 1 and 2. In these tables, we have in the first row, corresponding to each
maturity, the Black-Scholes theoretical values using the true parameter value, i.e., ¢ = 0.15.
Two groups of results are reported with the first computed using our nonparametric pric-
ing method and the second using the sample standard deviation. In each group, we report
five numbers: mean, median, standard deviation, minimum and maximum of the estimated
option prices obtained in 200 simulation runs. For the sample size of 252, the statistics indi-
cate that the nonparametric technique performs reasonably well in comparison to the results
using the Black-Scholes model with the estimated volatility, keeping in mind that using the
Black-Scholes model is expected to perform better because the additional knowledge about
the true nature of the data generating process is utilized in its implementation. Even taking
advantage of the additional information about the simulated data, the improvement over the
nonparametric pricing technique is not great as measured by the standard deviation. Both
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methods seem to yield upward biased price estimates with a larger bias for the nonparamet-
ric method. The general properties remain the same when the sample size is increased to
1260. Not surprisingly, the standard deviation decreases as the sample size increases.

We now turn to the implementation using real data. The data set consists of the S&P500
index and the three-month Treasury bill rates on a daily basis from the last trading day of
1995 to the last trading day of 2000. This yields 1263 daily excess returns in the sample. We
conduct the option valuation on December 29, 2000 which is the last day of the data sample.
The prevailing interest rate was 5.89%. After converting it to the continuously compounded
rate, we have r = 0.057231. For option valuation under the i.i.d. assumption, we thus
use p = 0.101397769 + 0.057231 and o = 0.184390836. We have assumed d = 0 in both
estimation and option valuation. The results for European calls are summaried in Figure 2
where the option values produced by the nonparametric method are converted to the implied
volatilities using the Black-Scholes formula. Such a plot is usually referred to as the implied
volatility surface. Whenever the implied volatility is higher (lower) than 0.184390836, the
nonparametric method yields a higher (lower) option value relative to the Black-Scholes
model. Figure 2 reports the implied volatilities from 7 trading days to 6 months over the
moneyness range from 0.85 to 1.15. It is clear that option prices inferred from the real
data differ from those suggested by the Black-Scholes model. For short-term options, there
is a clear pattern of volatility smile/smirk, suggesting that for in-the-money call options,
the nonparametric method yields values higher than those by the Black-Scholes model. For
out-of-the-money calls, the increase is much smaller in magnitude. This pattern is not at all
surprising given that the sample skewness and kurtosis are —0.340393637 and 6.568075038,
respectively. Fat-tails are expected to give rise to higher values for in- and out-of-the money
call options relative to the Black-Scholes model values. The negative skewness, however,
makes in-the-money calls even more valuable but lessens the effect of fat-tails on out-of-
the-money calls. Since this is the typical pattern exhibited by market prices of the S&P
500 index options, the nonparametric method which truthfully reflects the actual empirical
distribution appears to be a superior way of approaching option valuation.

The smile/smirk pattern quickly disappears when maturity is increased. This feature is,
however, at odd with the empirical regularities of the S&P 500 index options for which the
smile/smirk pattern persists for longer maturities. Our nonparametric pricing results are, of
course, computed under the i.i.d. assumption. The empirical evidence has long suggested
that a dynamic structure such as the GARCH effect is clearly present in financial data. In
other words, it is not surprising to produce an option pricing result that is at odd with
the empirical regularity. Flattening of smile/smirk is driven by the Central Limit Theorem.
With the typical dynamic structure observed in data, convergence to normality is expected
to take place slower. The implication of this result is not trivial because any model with i.i.d.
returns is expected to behave the same way in the maturity dimension. Different models only
produce different degrees of smile/smirk for a given maturity. When maturity is increased,
the same rate of reversion to normality applies to all models with i.i.d. returns, suggesting
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that these models will not be able to fit the implied volatility surface well.

For American options, we use puts instead of calls because American calls are effectively
European calls when there is no dividends. American puts are priced using the nonparametric
method and the Black-Scholes model and the results are reported in Table 3. As opposed
to the method of Stutzer (1996), we are able to price American options nonparametrically
because the nonparametric pricing system is developed on a period-by-period basis instead
of fixing the risk-neutral distribution for a given maturity. For any maturity, one simply
goes through our nonparametric pricing system period-by-period and recursively assesses
the early exercise possibility. The numerical technique described in Appendix is suitable for
European and American options. It can also be used to price barrier options using the idea
of Duan, et al (1999).

For ease of comparison, all American option values reported are based on assuming the
index level of 100 and these values can be easily translated to reflect the actual index level.
All values are computed by allowing early exercise on a daily basis because one trading day is
considered to be one basic period. The results are grouped according to the pricing method.
For in-the-money puts at the highest strike price of 110, the nonparametric method yields
higher values across all maturities. In the case of out-of-the-money puts, the Black-Scholes
approach gives rise to higher option values. The intuitive reason for these results is not
entirely clear. Although it is obvious that out-of-the-money European puts should have
higher values under the nonparametric method due to negative skewness of the S&P 500
index return, early exercise has significantly complicated the intuition. It may be helpful to
consider a two-period out-of-the-money put option. The stock price at time 1 is likely to be
high because the original high price makes it out-of-the-money. This makes early exercise
unwise. The value of holding on to the option is lower, however, if the return distribution is
negatively skewed. That is to say the nonparametric method will assign a lower value than
does the Black-Scholes model. This perhaps explain why American out-of-the-money puts
have higher values using the Black-Scholes model. In terms of dollar values, two valuation
methods do not generate significant differences. Percentage wise, however, the difference can
be substantial for out-of-the-money options.

3.2 Dynamic case

We now describe the implementation steps of the nonparametric option pricing theory for
asset returns exhibiting a dynamic structure. Recall our assumption that the dynamic struc-
ture is only present in the conditional mean and variance and they must be some functions
of past returns.

Step 1: Identify econometrically suitable dynamic structures for the conditional mean y; and
variance o2 using a sample of one-period continuously compounded asset returns

{R;;i = 1,--- N}, for example, use a GARCH-in-mean model without specifying the
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Step 2:

Step 3:

Step 4:

conditional distribution. To make the numerical valuation task more manageable, it is
advisable to assume that the conditional mean is some function of conditional standard
deviation because of the need to solve for A;.

Construct a smoothed version of the empirical distribution just as in Step 1 of the
preceding section using the normalized sample, R = {@,z =1,--- N}. Specifically,
we have G(z;R) = L3N 1{f < g} where 1{-} is an indicator function giving a
value of 1 if the condition is true and 0 otherwise. Again, we use the smoothed version
of the empirical distribution function G(x;©).

Solve for A} numerically in

/ exp [atG’l (CID(:U); (:)> + Ht} oz — A)) dz = exp(r — d). (14)
We use a bisection search to find A\ where the integral is evaluated numerically and
®(x) is evaluated using the standard polynomial approximation formula. Note that A
must be solved for every pair of (u, ;) and that is why parametrizing p; as a function
of o; will simplify the numerical task. Note that the numerical method used later
partitions o; into n states. As a result, A\; only needs to be evaluated n times under
the assumption that u; is a function of oy.

Choose a numerical scheme to generate the asset price until the maturity of the con-
tingent contract according to the following system:

Sy = S;_1 exp {atG_l ((ID(Zt); @) + ut} (15)

where Z, is a sequence of independent normal random variables with mean A; and
variance 1. Note that u, o, and A} are known at time (¢ — 1) because of the assumption
that u; and oy are functions of past returns. (For example, this is indeed the case for
the GARCH model.) Then compute the expected value of the contingent payoff.

To demonstrate the use of the nonparametric option pricing theory in a dynamic setting,
we assume the following nonlinear asymmetric GARCH-in-mean model:

Ry = p+owe (16)
1

pe = r—d+mno— 5@2 (17)

op = Po+Bropy + Baop (-1 — 0) (18)

where €;’s are 1.i.d. random variables with mean 0 and variance 1 without specifying its
distribution. Thus, Z, = &~ (G(et; @)) or ¢ =G! (@(Zt); @). We use the Markov chain
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method for the valuation task and the technical details for this particular dynamic model
are given in Appendix. The parameters in the above system are estimated using the quasi-
maximum likelihood method because we do not assume any conditional distribution function.
The data set is the S&P500 index excess return described in the preceding section. The pa-
rameter values obtained by the quasi-maximum likelihood estimation are n = 0.0381459263,
Bo = 0.0000072571, (1 = 0.7026496515, (B> = 0.0748155199 and 6 = 1.5299656423. As a
by-product of estimation, the sample R = {R%;‘ﬂ,z = 1,---1263} is also obtained. Note
that we have assumed d = 0 in this estimation.

Assume that we conduct the option valuation on December 29, 2000 which is the last
day of the data sample. The prevailing interest rate was 5.89%, which is translated into
r = 0.057231. The conditional standard deviation for the next day was estimated to be
0.22237484 (annualized), which will be used in the option valuation as the initial value of the
volatility. Again, for ease of comparison all option values are computed based on assuming
the index value of 100, and the parameters need to be converted for daily frequency because
one trading day is regarded as the length of one basic period. In the case of European options,
we use the implied volatility surface over the same range of moneyness and maturity as in
Figure 2 to examine the impact of using a dynamic return model. The results are presented
in Figure 3.

In comparison with Figure 2, there are two striking features. First, the smile/smirk is
clearly steeper for shorter maturities with in-the-money calls being substantially higher than
out-of-the-money calls. Second, the rate of flattening for smile/smirk is far slower than the
results under the i.i.d. assumption. The fact that the volatility surface becomes flatter
when maturity is increased is consistent with the Central Limit Theorem, suggesting that
eventually the standardized cumulative continuously compounded return becomes normally
distributed. What the dynamic model such as the GARCH process does is to generate a
dependence structure which makes the cumulative return more skewed and fat-tailed initially.
Beyond some point in the maturity dimension, convergence to normality begins to take hold
but the rate of convergence is slow due to the dependence structure. It is clear that using
the dynamic model makes a significant difference in option valuation. Given that the return
data exhibit GARCH-like dynamic features, it is imperative to account for them in option
pricing. Interestingly, the pattern in Figure 3 is qualitatively consistent with the results of
using market prices of options commonly reported in literature.

The dynamic model allows one to consider the effect of the market condition at the time
of option valuation. On December 20, 2000, the next day conditional volatility actually
reached 0.35018012 due to a 3.1% drop in the market value. This volatility is substantially
higher than the one a few days later previously used as our day of option valuation. We now
conduct option valuation on December 20, 2000 to examine the impact of a higher initial
market volatility. The volatility surface over the same range of moneyness and maturity
is given in Figure 4. Comparing it to Figure 3, the surface is higher overall and is clearly
steeper for shorter maturities. Again, the surface does not flatten quickly as in the i.i.d. case.
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Figures 3 and 4 together suggest that the general property as to how smile/smirk evolves in
the maturity dimension does not differ much for different levels of initial volatility. A higher
(lower) initial volatility simply places the surface higher (lower).

The impact of dynamic dependence on American option values is examined using Table
4. There are two panels in this table with the top panel corresponding to the last data point
of the sample and the bottom panel to a higher volatility state a few days earlier. Since
the initial volatility for the bottom panel is higher, it is not surprising to see the values in
the bottom panel higher than their corresponding ones in the top panel. The comparison
simply indicates the importance of accounting for the market condition at the time of option
valuation. A more interesting comparison is to consider the results reported in Table 3
under the i.i.d. assumption. The nonparametric method under the i.i.d. assumption tends
to generate lower values for out-of-the-money puts but higher value for in-the-money puts
(using the top panel of Table 4). This result indicates the importance of dynamic dependence,
for it alters the cumulative return distribution as well as changes the early exercise decision.

4 Extension to derivatives on multiple assets

In order to price the derivatives on more than one asset, we generalize the theory to the case
of multiple assets. Consider a sequence of k-dimensional vector of continuously compounded
asset returns, denoted by {Ry;t=1,2,---}. We again assume that the dynamic feature
occurs only in the one-period conditional mean and variance for each element of Ry, denoted
by p;: and O’Z%t. We further assume that they are functions of past asset returns so that asset
returns form a self-determining k-dimensional stochastic system. Due to the assumptions,

Ryi— Ryi— Rpp— ..
LMLt Tt bt ThitPkt) ¢ — 1 2 ...1 forms an ii.d. sequence of random vectors.
o1t o2t Okt ? »

Let G;(+) be the marginal distribution function of % Define Z;; = & (G,- (M»

Oi,t

where ®(-) again stands for the standard normal distribution function. Similar to the earlier
result, each Z;; is a standard normal random variable, but together the k-dimensional vector
of transformed returns need not follow a multivariate normal distribution. Here we assume
they form a multivariate normal distribution. This assumption amounts to assuming a
normal copula in forming a joint distribution from marginal ones. Let €2 be the k x k
correlation matrix. Denote by ¢(x;2) and ®(x; ) be the k-dimensional multivariate normal
density and distribution functions with mean vector 0 and covariance matrix 2.

Similar to the development in the earlier section, the risk-neutral density for the normal-
ized returns is the solution to the following problem: for some set of values {c1 ¢, ca, -+ Crr}
reflecting potentially time-varying nature of these values,

[ o0 f(x)
gin [ o[ 60 s ) & (19)
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subject to /Oo /oo f(x)dx = 1

/m---/ooxif(x)dx = ¢y, fori=1,2-- k.

The solution to the above programming problem is in the form of

Fx) (x; Q) exp (S8, gig:)
XiA) = T s
% %% 0% Q) exp (S5 gigs) dx

= ¢(x— A1) (20)
where A; is a k-dimensional vector corresponding to {qi+, ¢a.t, - - - Gkt }, which in turn corre-
sponds to {ci4,Cat, - Cke}. In other words, we might just as well ignore {c14,cCor, - Crs}
and view the density function as parameterized by A;. The value of A\; is of course determined
by the fact that the risk-neutral density must give rise to an expected asset return equal
to the risk-free rate r (continuously compounded) minus the dividend yield d; (continuously

compounded) on an asset-by-asset basis. Due to multivariate normality, this can be solved
individually using the risk-neutral marginal distribution; that is, A7, solves

[ exp 00,6 (®(2)) + pid] 6z — N1 dr = explr — ). (21)

Note that the above equation is again due to R;; = 0;,G;' (®(Z;;)) + pis so that term

exp [ai,tG[ L(®(z)) + /Li,t} is the one-period gross return of the asset.

Using the transformation, the sequence of continuously compounded return for the ¢-th
asset can be expressed as {R;;;t=1,2,---} = {O’i,tGi_l (D(Ziy)) + pig;t=1,2,-- } where
Zi is the normalized return and has the physical density function of ¢(z) and the risk-
neutral density function of ¢(z — Aj;). Note that the correlation between Z;; and Z;; equals
the (7, j)-th element of © under both the physical and risk-neutral distributions. As a result,
the risk-neutral asset value dynamic becomes

Sz’,t = Si,t—l exp |:O'i7tG;1 ((I)(Z%t)) + :ui,t} s for 1 = 1, 2, ey, k (22)

where Z;; is a normal random variable with mean A, and variance 1 and the correlation

between Z;, and Z;, equal to the (7,7)-th element of (2. The multivariate option pricing
system is thus completely characterized.

5 Appendix

5.1 Smoothing the empirical distribution function

For this purpose, we piece together three functions to form the smoothed version of the
empirical distribution function. First we define a function that is the standard normal
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distribution function modified by a cubic polynomial to allow for departure from normality:
Q(z) = a®(z)® + b®(x)* + c®(x) +d.

Next we define the general Pareto distribution, for w > 0,

1

- (1+2) 7% #5640
1—exp(—ﬂ) ifo=0

w

H&,w (y) -

I

where the supportisy > 0if 6 > 0and 0 <y < —%if 6 < 0. The distributions corresponding
to 6 > 0 are fat-tailed whereas those corresponding to 6 < 0 have bounded tails. By
the extreme value theory, most distribution functions have their exceedance distribution
functions (distribution function conditional on a tail) well approximated by the general
Pareto distribution. Technically, the following result, due to Balkema and de Haan (1974)
and Pickands (1975), serves as the theoretical basis for this assertion: there is a positive
measurable function w(u) such that

lim  sup ’Pr Y —u<ylY >u} - H(g,w(u)(y)‘ =0.

U000 g<y<oo

This provides an flexible way of fixing the functional form for both the right and left tails.
For the middle portion, we use the cubic polynomial modified normal distribution function.
Piecing three functions together in a continuous and differential manner gives rise to

Q(ur) — Q(ur)Hs, o, (€77 — 1) ifz <y
G(z;0) = Q(x) ifug <z <uy
Q(u2) + [1 — Q(uz)] Heywp(e*2 — 1) if £ > o

for uy > uy.

The tail probabilities are modeled by the exceedance distribution on the exponential of
x to ensure that the expected gross return is finite. If the expected gross return does not
exist, the expected future stock price must be infinity and all call option values also become
unbounded. Since z is a normalized continuously compounded return, the expected gross
return amounts to the moment generating function evaluated at o. For 6 > 0, the moment
generating function does not exist because the tail probability rate is governed by a power
function. Using the exponential of x in the exceedance distribution ensures existence of the
moment generating function.

Note that there are eight parameters in the system, but six of them are free due to the
smooth pasting requirement. These free parameters are © = (a, b, ¢, d, 61, 62). Continuity is a
natural result of the construction but differentiability at u; and us constrains two parameters
- w1 and wy. In the implementation, we use u; = —1.5 and u, = 1.5. We find 0 by solving
the following nonlinear regression problem:

[0 7m) (%70

o
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5.2 Option valuation: the I.I.D. case

We use the method of Duan and Simonato (2001) to come up an m-state time-homogeneous
Markov chain to approximate the stochastic process of the transformed variable X; =
InS; — (r — d)t under the risk-neutral distribution. Let m be an odd integer to simplify
the construction. Let xyy and z, denote the largest and smallest state values used and make
the center of the interval equal to the initial value of the target chain X,. Equally partition
the interval into m — 1 cells and denote the set of m states by {x1,xs, -,z } with x; = zp,
T(m+y1)/2 = Xo and z,, = xy. To facilitate the following derivation, we conveniently let
x9 = —o0 and x,,11 = oo. The m-state Markov chain has the transition probability from
the ith state to jth state defined as

X + Tjt+1

Ty = Pr XtJrl < Xt = .TZ}

| < zi—r+d+ oG (<I>(Zt+1);@) +u <

{
{
{5(% ritr—d—p) <G (O (Zt+1)@)}
"

Z; + Tj+1 }
2

<l(£L§¢1—mi+r—d—u)

3 [G (2 (25 — gyt v —d— 1) ;0)] < Zun }

< O~ 1[ ( (i'%ﬂ—xi—i—r—d—u);@)}

- ool (-] ) -]

“ofor o (L (280 pirma- i) 0)] - ).
g

Since m;; does not depend on ¢, the Markov chain is time-homogeneous. Denote the transition
probability matrix by II with its (4, j)-th entry being ;. Note that II is a highly sparse
matrix by the nature of the problem. (Sparsity is obtained in our implementation by treating
any value less than 107¢ as 0. We then normalize each row to have the row sum equal to 1.)
Let the m-dimensional value vector at time ¢ be V;. Denote the contingent payoff function
by f(S;) and the payoff vector corresponding to m values of z; by F;. In other words, the
ith element of F; is f(exp(z; + (r — d)t)). At maturity, Vo = Fr. The following recursive
system can be used to value American style options:

Vi = max {F,e TV, }
For European style options, it can be simplified to V; = e "9~ F.. The option value

corresponding to the current stock price is the center element of V.
In our implementation, we let x, = 30/T —t. The value for xyy and z;, are determined

18



m—1
100

Im—1
I, = Xo—xg W

Note that we treat m = 101 as the base case for which the Markov chain is constructed
to cover the target variable at the maturity of the option over the range of three standard
deviations in each direction. Such a construction can ensure that the partition condition
given in Duan and Simonato (2001) is satisfied so that the approximation algorithm will
converge to the right theoretical value as m tends to infinity. The results reported in the
paper are computed using m = 501.

Ty = X0+1Eg

5.3 Option valuation: the dynamic case

In the following description, we use the return dynamic given in (16)-(18). These restrictions
make the target system into a two-dimensional Markov process. We again follow the idea of
Duan and Simonato (2001) to come up an m X n-state time-homogeneous Markov chain to
approximate the stochastic process for the pair of transformed variable Xy, = In Sy — (r —d)t
and Xy = Ino7,; under the risk-neutral distribution (with m values for X;; and n values for
Xo¢). We make minor modifications to suit our specific problem whenever it is appropriate.
Note that the price dynamic is a univariate non-Markovian system but has been changed to
a bivariate Markovian system so that the Markov chain method can apply. Again m and n
are odd integers to simplify the construction of the Markov chain.

Let z1y and x1; denote the largest and smallest state values used for X;,. Similarly, we
have xopy and x5y, for Xo;. We center the transformed asset price interval at X;q, the initial
value of the transformed asset price. For the logarithmic volatility, we center the interval
at X, which is the unconditional mean of X,,. Note that we do not center the interval at
Xy, the initial value of the logarithmic volatility, because the process Xy, is a stationary
system which mean reverts to X,. Equally partition these intervals into m —1 and n—1 cells

and denote the Cartesian product of m x n states by {(z1;,29;) :i=1,---,m;j=1,---n}
where z1; = 71z, Ti(m41)/2 = X10, Tim = Ty, T21 = Tar, To(n+1)/2 = Xo and To, = Toy.
To facilitate the following derivation, we conveniently let x19 = —oo0 and z;(;,41) = oo. The

m x n-state Markov chain has the transition probability from the (i, j)-th state to (k,[)-th
state defined as

Rliyjik, ) = Pr DTk
%1 {372([—1)2+ X2

T+
Mfl(kﬂ) Xt = @14y Xot = $2j}

Toy + T
< T (@14, T1g, T25) < mf%l“)}

< Xy <
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where

1 2
F(:I;,y,z)zln lﬁo+ﬁlez+ﬁ2 (y_l'_<7’]+9)62/2+§ez> ]

Note that the indicator function comes into play because Xp;11) =1T' (X 16> X1(t41)5 th) due
to equations (16)-(18).
Numerically solve for A} corresponding to each z; in

o0 ~ 1
/ exp [e”iﬂG_l (CID(:U); @) + ne®2l/? — 56””21] ¢(x — Nj) do =1,
which is derived from equation (14). Thus,

T1k + T1(k+1)
2

~ 1
< xy; + e™6/2G7! ( (Ze11); @> + net2i/? — 5€x2j <
wzj/2 T1 (k- 12>+"’1k z1; + 165023‘) -n< Gt (@(Zt+1); @> }

x +m .

{ ZTi(k-1) + 1k

2 < Xyesn) <

X = w14, Xog = 1’23'}

1(k— 1) + Tk Tik + T1(k+1) }

2

. { 6 o (2 — 1 4em) < 6)] < Zu }
< Pl [G( —9;/2 (Ilk+z21(k+l) —ry %eaﬂj) —n; @)}
o {qu

1 ~
6 (e (B D L) 6)] - )

_ 1 D
_P {q)l [G (e:rzj/Q (%—*—xlk — 1z + 5@9”%‘) —n; @)} — )\;‘} .

It is clear that m(7,7;k,1) does not depend on t and thus the Markov chain is time-
homogeneous. Denote the mn x mn transition probability matrix by II with w(i, j; k,1)
as its entry. It should be pointed out that II is a highly sparse matrix by the nature
of the problem. (Sparsity is in part obtained by the fact that theoretically there are at
most m nonzero elements in any row due to the GARCH structure and in part due to our
implementation of treating any value less than 107% as 0. We always normalize each row to
have the row sum equal to 1.) Let the mn-dimensional value vector at time ¢ be V;. Denote
the contingent payoff function by f(S;) and the mn-dimensional payoff vector corresponding
to m values of x1; by F;. (Note that the payoff function only depends on price not volatility.
Thus, the mn-dimensional payoff factor consists of the m-dimensional vector repeated for n
times.) In other words, the element of F} corresponding to xy; is always f(exp(xy;+ (r—d)t)).
At maturity, Vr = Fp. The following recursive system can be used to value American style
options:

V; = max {Ft, e_THVtH} )
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For European style options, it can be simplified to V; = e "T~OIIT~*F;. We take the option
value corresponding to the current stock price and volatility as the linearly interpolated
value using two elements of V; where both of them correspond to the current stock price but
one has a volatility immediately above the current volatility level and the other immediately
below it. The reason for performing interpolation is due to the fact that the logarithmic
current volatility is not necessarily a value in the discretized set because of centering the
interval at Xs.

In our implementation, we let x;, = 3¢1V1' — t and x9y = 310, where 1), is the standard
deviation of the sample {R;;i = 1,--- N} and 1), is the standard deviation of estimated
values of In (¢?) using the GARCH model to filter the sample {R;;i = 1,--- N}. Note that
we take the sample mean of In (02) as X,. We do not multiply 1, by v/T — t because the
volatility system is stationary and its variability does not grow with time. We also need to
take into account the possibility that the logarithmic initial volatility may be outside the
range defined around its stationary value. The value for z;; and x;; (i = 1,2) are thus
determined by

m—1 b% m—1
100 ; 1L 10 1g 100 )

— n—1 . — n—1
Toy = maX{X207X2+$2g\/W}, ng:mln{Xgo,Xg—xgguT}.

Note that we use m = 101 and n = 51 as the base case. Such formulas can ensure that the
partition condition given in Duan and Simonato (2001) is satisfied so that the approximation
algorithm will converge to the right theoretical value as both m and n tend to infinity. The
results reported in the paper are computed using m = 501 and n = 101.

Ty = Xio+ Ty
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Table 1. A comparison of the nonparametric method with the Black-Scholes model
using 252 simulated returns. The following parameter values are used: w = 0.1 and 6
=0.15 and r = 0.05. Maturity in terms of trading days is determined by using 252 trading
days per year and rounding it to the nearest integer. Statistics are computed using 200

simulation runs.

Strike price/stock price
T =1 month
0.90 0.95 1.00 1.05 1.10
Black-Scholes 103817 | 5.5947 |  1.9396 | 03479 |  0.0289
(True parameter)
NP (i.i.d.; N=252)
Mean 10.3843 5.6152 1.9786 0.3680 0.0338
Std 0.1178 0.1138 0.1139 0.0615 0.0125
Median 10.3920 5.6280 1.9876 0.3740 0.0340
Min 9.8420 5.0962 1.6090 0.2270 0.0104
Max 10.7723 5.9291 2.2735 0.5435 0.0794
Black-Scholes (Est. parameter; N = 252)
Mean 10.3825 5.5995 1.9475 0.3539 0.0308
Std 0.0035 0.0360 0.0831 0.0504 0.0099
Median 10.3823 5.6013 1.9548 0.3571 0.0307
Min 10.3764 5.5152 1.7340 0.2319 0.0111
Max 10.3979 5.7223 2.2045 0.5200 0.0704
Strike price/stock price
T = 6 months
0.90 0.95 1.00 1.05 1.10
Black-Scholes 127467 | 87561 | 55271| 3.1837|  1.6694
(True parameter)
NP (i.i.d.; N = 252)
Mean 12.7987 8.8356 5.6243 3.2810 1.7528
Std 0.6476 0.5803 0.4891 0.3824 0.2733
Median 12.8541 8.8937 5.6696 3.3207 1.7805
Min 9.8909 6.3083 3.6301 1.8720 0.8646
Max 14.8741 10.5822 7.0186 4.3906 2.5767
Black-Scholes (Est. parameter; N = 252)
Mean 12.7585 8.7723 5.5459 3.2030 1.6873
Std 0.0904 0.1522 0.1967 0.2021 0.1703
Median 12.7632 8.7839 5.5629 3.2205 1.7005
Min 12.5450 8.3924 5.0421 2.6852 1.2603
Max 13.0646 9.2576 6.1555 3.8291 2.2276
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Table 2. A comparison of the nonparametric method with the Black-Scholes model
using 1260 simulated returns. The following parameter values are used: u=0.1 and
=0.15 and r = 0.05. Maturity in terms of trading days is determined by using 252 trading
days per year and rounding it to the nearest integer. Statistics are computed using 200

simulation runs.

Strike price/stock price
T =1 month
0.90 0.95 1.00 1.05 1.10
Black-Scholes 103817 | 5.5947 |  1.9396 | 03479 |  0.0289
(True parameter)
NP (i.i.d.; N = 1260)
Mean 10.3902 5.6231 1.9914 0.3747 0.0346
Std 0.0241 0.0271 0.0406 0.0246 0.0053
Median 10.3906 5.6235 1.9939 0.3754 0.0347
Min 10.2267 5.4413 1.8061 0.2829 0.0179
Max 10.5411 5.7496 2.0979 0.4410 0.0487
Black-Scholes (Est. parameter; N = 1260)
Mean 10.3819 5.5959 1.9417 0.3494 0.0294
Std 0.0015 0.0164 0.0379 0.0229 0.0044
Median 10.3819 5.5962 1.9432 0.3501 0.0293
Min 10.3782 5.5490 1.8275 0.2825 0.0178
Max 10.3884 5.6562 2.0739 0.4324 0.0471
Strike price/stock price
T = 6 months
0.90 0.95 1.00 1.05 1.10
Black-Scholes 127467 | 87561 | 55271| 3.1837|  1.6694
(True parameter)
NP (i.i.d.; N = 1260)
Mean 12.8338 8.8728 5.6612 3.3127 1.7753
Std 0.1371 0.1334 0.1277 0.1136 0.0899
Median 12.8350 8.8793 5.6673 3.3152 1.7778
Min 11.8658 7.9520 4.8506 2.6699 1.3226
Max 13.6547 9.5823 6.2235 3.7171 2.0385
Black-Scholes (Est. parameter; N = 1260)
Mean 12.7497 8.7603 5.5322 3.1889 1.6741
Std 0.0411 0.0693 0.0896 0.0921 0.0776
Median 12.7506 8.7627 5.5356 3.1924 1.6768
Min 12.6313 8.5545 5.2624 29117 1.4433
Max 12.9006 9.0065 5.8454 3.5106 1.9488

25




Table 3. American put prices based on the nonparametric method (under the i.i.d.
assumption) and the Black-Scholes model. The data set contains daily S&P 500 index
excess returns from the first trading day of 1996 to the last trading day of 2000 totaling
1263 data points. The current stock price is 100 and » = 0.057231. The sample standard
deviation equals 0.184390836. Maturity in terms of trading days is determined by using
252 trading days per year and rounding it to the nearest integer.

Strike price
Maturity
90 95 100 105 110
NP (i.i.d.; N=1263)
1 month 0.0331 0.3675 1.8665 5.2233 10.0000
2 months 0.1815 0.8363 2.5380 5.6325 10.0000
3 months 0.3749 1.2227 3.0181 5.9821 10.0691
4 months 0.5722 1.5530 3.3986 6.2802 10.1885
5 months 0.7623 1.8372 3.7151 6.5377 10.3159
6 months 0.9429 2.0884 3.9904 6.7673 10.4430
Black-Scholes (Est. parameter; N = 1263)
1 month 0.0380 0.3959 1.9055 5.2263 10.0000
2 months 0.1996 0.8725 2.5672 5.6271 10.0000
3 months 0.3994 1.2552 3.0330 5.9627 10.0454
4 months 0.5974 1.5767 3.3978 6.2444 10.1496
5 months 0.7844 1.8499 3.6981 0.4854 10.2605
6 months 0.9593 2.0887 3.9568 6.6984 10.3706
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Table 4. American put prices based on the nonparametric method under the dynamic
model assumption. The data set contains daily S&P 500 index excess returns from the
first trading day of 1996 to the last trading day of 2000 totaling 1263 data points. The
current stock price is 100 and » = 0.057231. Maturity in terms of trading days is
determined by using 252 trading days per year and rounding it to the nearest integer.

Strike price
Maturity
90 95 100 105 110
NP (initial volatility = 0.22237484)
1 month 0.2763 0.7668 2.1014 5.1576 10.0000
2 months 0.6346 1.3367 2.7929 5.5510 10.0000
3 months 0.9358 1.7744 3.3113 5.9379 10.0000
4 months 1.2060 2.1484 3.7451 6.2953 10.0662
5 months 1.4544 24797 4.1215 6.6214 10.2028
6 months 1.6852 2.7777 4.4557 6.9200 10.3619
NP (initial volatility = 0.35018012)
1 month 0.7007 1.4882 3.0297 5.7944 10.0000
2 months 1.1678 2.1060 3.7065 6.3043 10.1302
3 months 1.4716 2.5044 4.1608 6.6997 10.3143
4 months 1.7240 2.8338 4.5379 7.0437 10.5137
5 months 1.9527 3.1267 4.8687 7.3515 10.7148
6 months 2.1652 3.3926 5.1656 7.6310 10.9112
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Figure 1a. The empirical distribution and its smoothed version for a simulated sample of
252 standard normal random variates.
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Figure 1b. The empirical distribution and its smoothed version for a simulated sample of
1260 standard normal random variates.
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Figure 1c. The empirical distribution and its smoothed version for the S&P 500 index
return data (standardized).
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contains daily S&P 500 index excess returns from the first trading day of 1996 to the last

trading day of 2000 totaling 1263 data points. Maturity is stated in fractions of one year

Figure 2. The implied volatility surface of the European call option values computed
and stock-to-strike price ratio is used to represent moneyness.

with the nonparametric pricing method (under the i.i.d. assumption). The data set



Figure 3. The implied volatility surface of the European call option values computed

with the nonparametric pricing method under the dynamic model assumption using the

initial volatility of 0.22237484. The data set contains daily S&P 500 index excess returns
from the first trading day of 1996 to the last trading day of 2000 totaling 1263 data
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Figure 4. The implied volatility surface of the European call option values computed

with the nonparametric pricing method under the dynamic model assumption using the

initial volatility of 0.35018012. The data set contains daily S&P 500 index excess returns

from the first trading day of 1996 to the last trading day of 2000 totaling 1263 data
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