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Abstract
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1 Introduction

There are two strands of literature dealing with the valuation of options when the asset return
volatility is stochastic. The first strand approaches option pricing with stochastic volatility in
a diffusion framework. Farlier models that allow for stochastic volatility specify the diffusion
coefficient as a function of asset price. The compound option pricing model of Geske (1979), the
CEV option pricing model of Cox (1975), the displaced diffusion model of Rubinstein (1983) are
some examples. These earlier models are of univariate nature. More recently, option pricing with
stochastic volatility has been dealt with in a bivariate diffusion framework, in which the volatility
of an asset is assumed to follow a separate stochastic process. The examples of this approach
are abundant: Hull and White (1987), Scott (1987), Wiggins (1987), Johnson and Shanno (1987),
Melino and Turnbull (1990), Stein and Stein (1991) and Heston (1993).

The second strand of literature develops the option pricing model in a GARCH framework. The
earlier work by Engle and Mustafa (1992) attempts to extract information from option prices in
the GARCH setting. A comprehensive development of the GARCH option pricing theory is first
available in Duan (1995). The GARCH option pricing theory has also been extended to pricing
currency-related derivative products (Duan and Wei, 1996) and term structure and interest rate
derivatives (Duan, 1996a). Kallsen and Taqqu (1994) have also proposed a continuous-time version
of the GARCH model, and interestingly they are able to arrive at the GARCH option pricing model
of Duan (1995) by an arbitrage-free argument.

The purpose of this article is to unify the GARCH and bivariate diffusion approaches to option
pricing under stochastic volatility. The result in turn provides new insights into many existing
bivariate diffusion option pricing models. A unified treatment of option pricing with stochastic
volatility is made possible by employing the limit result in Duan (1996b). Nelson (1990) is the first
one to show that the GARCH process could weakly converge to some bivariate diffusion models.
Duan (1996b) shows an enlarged parametric family of GARCH processes, referred to as augmented
GARCH process, also converges to a suitable bivariate diffusion limit. This limit process contains
most stochastic volatility models appearing in the literature of option pricing. It is Duan’s (1996b)
generalized limit result that makes the unification of option pricing theory possible.

Our strategy in this article begins by describing the asset price dynamic as an augmented
GARCH process. A sequence of economies corresponding to a decreasing length of the basic oper-
ational time interval is constructed. For each element of the sequence, an approximate augmented
GARCH process is assumed to describe the asset return dynamic in that particular economy. We
then invoke the local risk-neutral valuation principle to establish the GARCH option pricing model
for this economy. As a result, we obtain two augmented GARCH processes for each economy -
one under the data generating probability measure and the other under the locally risk-neutralized
probability measure. Shrinking the length of the basic operational time interval to zero yields two
limiting bivariate diffusion processes with each governed by its own weak limit of the sequence of
probability measures. In addition, we show the weak limit of the locally risk-neutralized probability
measures is a minimal martingale measure in the sense of Follmer and Schweizer (1991).



The limit result is used to reexamine several existing option pricing models. In some cases,
the limit result strengthens the conclusion of the existing models, whereas in others, we obtain the
conditions needed for justifying the existing models. Theoretically, our result offers a solution to
the dilemma facing option pricing in the bivariate diffusion framework. In such setup, there are
two driving innovations underlying the asset return, but only one underlying asset and the risk-free
bond can be used to construct hedge portfolios. This theoretical difficulty is well known in the
option literature. The difficulty stems from the fact that the set of equivalent martingale measures
is not a singleton. The pricing strategies in this strand of literature are often ad-hoc; for example,
assuming volatility is a traded asset, or assuming volatility risk is uncorrelated with aggregate
consumption, or assuming the volatility risk premium is a separate constant. The correspondence
between the two limiting diffusion processes, derived in this article, therefore provides an alternative
option pricing system for the bivariate diffusion setup.

Our limit result also has an important practical significance. It allows for interchanging the
GARCH and bivariate diffusion models for purposes of estimation and option valuation. With this
limit result, one can easily draw from a vast array of numerical and statistical techniques already
developed for the GARCH models and/or diffusion systems.

2 Asset price process from GARCH to diffusion

Consider the nth economy defined over a finite time interval [0,7]. Divide this interval into nT
subintervals of equal length. Let s denote the length of these subintervals, i.e., s = 1/n. Let
ek, k=1,2,--- be a sequence of i.i.d. standard normal random variables under the data generating
probability measure P of a suitably defined probability space. Define
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where f(z;6) = Zﬁﬁ_ L for any z > 0. We define the means of these random variables as

o = EP(Z)
¢ = EF(ZY)
w = EP(Z)

where ¢, q3 and g4 are three finite constants. The asset price is assumed to follow an approximate
augmented GARCH(1,1) process first defined in Duan (1996b). For k =1,2,---,nT,
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The variable s is the length of the approximating time interval. The specific specification for
the conditional mean allow us to interpret the parameter w as the unit risk premium of the asset
return. For analytical convenience, we assume that the interest rate » and the unit risk premium
w are constant. If these two parameters are stochastic but predictable, then the results derived in
this article will remain intact. Additional structures are, however, needed in order to derive the
dynamic for the interest rate and for the unit risk premium.!

If the length of time interval is one, i.e., s = 1, different parameter restrictions yield many
existing GARCH models. If A = 1,¢ = 0,6 = 2,a3 = 0,a4 = 0 and a5 = 0, the augmented
GARCH model reduces to a linear GARCH-Mean model. If A =0,¢=0,6 =1, a2 = 0 and a3 =0,
then the augmented GARCH model specializes to the exponential GARCH-Mean process. Other
versions of the GARCH model can also be produced by setting appropriate parameter values (see
Duan, 1996b).

Define 0;; as element (i, ) of Varf (e, Z,?), Z,g?’), Z,g4)), a constant matrix. Let P, denote the
distributions of the augmented GARCH(1,1) process in the nth economy. In following lemma, we
state a simplified version of Theorem 3 of Duan (1996b).

Lemma 1. The augmented GARCH(1,1) model defined in (4), (5) and (6) weakly converges to
the following bivariate diffusion model:
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Wit and Wo; are two independent P*-Wiener processes and
P* denotes the weak limit of P,.

Proof: see Theorem 3 of Duan (1996b).

!The assumption of constant risk-free rate and unit risk premium is not theoretically trivial. Consider an economy
with one risky and one risk-free asset, in which the representative agent has a time-additive, separable expected utility
function. If the risky asset, i.e., the market portfolio, has a stochastic volatility in this economy, then it implies that
the risk-free interest rate and unit risk premium are stochastic. Strictly speaking, the assumption of constant interest
rate and risk premium precludes the market portfolio, although not individual assets, from having a stochastic
volatility. If one wants to model the market portfolio with stochastic volatility, letting the interest rate and risk
premium be stochastic is essential in keeping an overall consistent option pricing model.



The limit model is well defined because |p;| < 1 and v; is bounded away from zero. The last two
terms involved two independent Wiener processes in the equation for ¢; can be, if one so chooses,
combined into v:dZ; where Z; is a newly-defined Wiener process with p; being the correlation
between Wy, and Z;.

This limit process specializes to many existing bivariate diffusion models commonly used in the
literature. If A = 0,¢ = 0,0 = 1,3 = 0 and ag = 0, the stochastic variance has the following
dynamic:
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The model corresponding to the above system is the exponential GARCH model of Nelson (1991).
This diffusion specification for stochastic variance is used in Wiggins (1987) for pricing options with
stochastic volatility.

If a non-linear asymmetric GARCH model of Engle and Ng (1993) is adopted, i.e., A = 1,6 =
2,a3 =0,a4 =0 and a5 = 0, then
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The limit of the GARCH model by Glosten, et al (1993) shares the same diffusion limit with the
non-linear asymmetric GARCH model. If we further restrict the model by setting ag = 0, it gives
rise to the specification of Hull and White (1987). When the asymmetry parameter ¢ is set to
zero, the approximating model is known as the linear GARCH(1,1) process in Bollerslev (1986)
and Taylor (1986). Under this model, the return and volatility innovations are uncorrelated in the
nth economy and become independent in the limit.

The stochastic volatility model of Scott (1987), Stein and Stein (1991) and Heston (1993) can
also be obtained by setting A = %, c=0,0=1,as =0 and ag = 0. In such case,
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where ¢f = @Qi, and LY(¢}) denotes the local time of ¢} at 0. In Scott (1987), Stein and Stein
(1991) and Heston (1993), ¢; is interpreted as the conditional standard deviation. The model
above, however, follows the interpretation given in Duan (1996b). Duan argues that viewing ¢} as
the standard deviation is inappropriate because ¢; can take on negative values. Use of the correct
interpretation will not change the basic option pricing result in Scott (1987), Stein and Stein (1991)
and Heston (1993), because h; and ¢}? share the same dynamic.



3 Equilibrium pricing measure and local risk neutralization

We first define an equilibrium pricing measures by
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where U(Cy) denotes the utility function of consumption Cy used in the standard intertemporal
time-additive and separable model of Lucas (1978), and (3 is the subjective intertemporal discount
rate.

Following Duan (1995), we define the concept of local risk-neutralization which plays the key
role in our derivation of the option pricing theory under stochastic volatility. Let .7-',&") be the
information set available up to time ks in the nth economy.

Definition. The equilibrium pricing measure @ is said to satisfy the local risk-neutral valuation
relationship (LRNVR) in the nth economy if

1. Qis mutually absolutely continuous with respect to P,
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The LRNVR is shown by Duan (1995) to be valid in the GARCH framework when, for example,
the utility function is of constant relative risk aversion and changes in the logarithmic aggregate
consumption are distributed normally with constant mean and variance under measure P. The
constant mean and variance assumption is simply to ensure that the one-period interest rate remains
constant in equilibrium. The LRNVR still holds when the mean and variance are stochastic, but
the interest rate can no longer be a constant.

The LRNVR is automatically satisfied in the bivariate diffusion model, and can be proved by
applying a martingale representation to the equilibrium pricing measure and then invoking Gir-
sanov’s theorem. The LRNVR is, however, insufficient in a bivariate diffusion model for obtaining
a unique option price. In the complete market setting of Harrison and Kreps (1979) and Harri-
son and Pliska (1981), the set of equivalent martingale measures is a singleton, whereas in the
stochastic volatility model, the set of equivalent martingale measures contains infinite number of
elements with all of them satisfying the LRNVR. The key to our approach is restrict the attention
to a sequence of pairs of distributions (data generating and locally risk-neutralized) with each pair
corresponding to the asset return dynamic of the nth economy.

We use in this article the LRNVR to obtain a characterization of the asset return dynamic under
the equilibrium pricing measure (). Although the resulting model implicitly depends on preferences,
it is only indirectly through the unit risk premium of the underlying asset. Interestingly, Kallsen and
Taqqu (1994) show that the GARCH option pricing model of Duan (1995) can also be established
by an arbitrage-free argument. Their result therefore implies that an arbitrage-free option pricing



model is not necessarily preference-free. From the standpoint of implementation, the unit risk
premium is, either explicitly or implicitly, part of an empirical specification for the asset return.
All parameters required for option pricing under the GARCH specification are therefore identified
directly under the data generating measure P.

Theorem 1. Under the equilibrium pricing measure @) that satisfies the LRNVR in the nth econ-
omy, the augmented GARCH process has the following dynamic:
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Proof: see Appendix.

Letting s = 1, Theorem 1 leads to the augmented GARCH option pricing model, a generalization
of Duan (1995). In accordance with Theorem 1, local risk-neutralization results in a mean shift for
the asset return. The essential distributional characteristics of the asset return, however, remain
unchanged. Local risk-neutralization also results in a corresponding shift in the innovations that
govern the auxiliary variable ¢;. Since the conditional variance is predictable, this shift does not
have any effect locally, i.e., for the next period. It nevertheless affects the global behavior of the
conditional variance process. Failure to retain the property of global risk neutralization does not
adversely affect one’s ability to derive an operational option pricing model. This is because the
shift in innovations is based on the unit risk premium parameter w that can always be estimated
along with the parameters governing the volatility process.

Let @, denote the distributions generated by the model in Theorem 1. An important limit
result is now in order.

Theorem 2. The locally risk-neutralized augmented GARCH(1,1) process in Theorem 1 weakly
converges to the following diffusion system:

dnX, = (r— %ht)dt + VhedW5, (19)
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Q" denotes the weak limit of measure @Q,,.
Proof: see Appendix.

In terms of (19), the result is a standard one. The contribution of Theorem 2 is the dynamic
presented in (20). This theorem implies that the auxiliary process must undergo a mean shift when
a change in measures takes place. The adjustment terms are captured by two parameters ng and
11, which are in turn determined by the correlation structure, with respect to the data generating
probability measure P, between the innovation for the asset return and those for the auxiliary
variable ¢y.

4 Minimal martingale measure and option pricing

Follmer and Schweizer (1991) introduce the concept of minimal martingale measure which has
been used in the literature as a way of dealing with too many equivalent martingale measures.
Schweizer (1992) and Colwell and Elliott (1993) are two examples. An intuitive justification for
using the minimal martingale measure is that the risk orthogonal to the asset return should not be
compensated, i.e., zero risk premium for orthogonal risk. Although this idea seems intuitive when
applied to the market portfolio, it is not clear whether one can assign a zero premium to the risk
orthogonal to an individual asset. In this section, we establish that for pricing contingent claims,
the weak limit of the locally risk-neutralized probability measures is a minimal martingale measure.
This result provides an exceedingly simple way for obtaining the option pricing result for a given
bivariate diffusion model.

Let F; be the information filtration generated by Wi, and Wy, up to time ¢, and F(X;) the one
generated by X; up to time ¢. Clearly, F(X;) is contained in F3, and the limit induces an expansion
in the filtration. Any probability measure 7 is referred to as an equivalent martingale measure if
7 and P* share the null sets and the discounted asset price, i.e., e "Xy, is a (7, F;)-martingale.
The minimal martingale is an equivalent martingale measure that for any local (P*, F;)-martingale
that is orthogonal to F(X}) remains a local (7, F;)-martingale. The following corollary can greatly
simplify the derivation of the option pricing result for any member of the bivariate diffusion family



described in Lemma 1. This corollary immediately follows from Theorem 2 because W7, = Wi 4wt
and W3, = Woy.

Corollary 1. The weak limit of @)y, i.e., Q*, is a minimum martingale measure.

The minimal martingale measure can be used to price contingent claims such as options on X;
because they are F(X;)-measurable claims. The result in Corollary 1 is, in some sense, peculiar and
thus calls for further elaboration. Any F;-measurable contingent claim, even though it is not F(X;)-
measurable, will be assigned a unique price by @*. This conclusion results from the expansion of
filtration from F(X;) to F; in the limit. As proved in the preceding section, the locally risk-

neutralized measure @), in the nth discrete-time economy is only applicable to F(X ISZ )-measurable

(n)

contingent claims, such as options on sz . The limit result has enlarged the filtration, which
is not needed for option pricing but nevertheless yields a model price for the general contingent
claim. This peculiar phenomenon arises from using the GARCH model, a univariate non-Markovian
discrete-time process, to approximate a bivariate diffusion model. The risk orthogonal to the asset
return innovation in the limit economy must originate from the uncorrelated component of some
transformation of the asset return (see equations (1), (2) and (3)). Under the equilibrium pricing
measure @, this orthogonal risk component continues to be orthogonal to the asset return innovation
in nth discrete-time economy, because the correlation structure remains unchanged after a change of
measures if it satisfies the LRNVR. It is therefore not surprisingly that this form of orthogonal risk
becomes independent of the asset return innovation in the limit economy and is pricing-irrelevant.

Our result thus poses no conceptual difficulty when is used to reconcile the existing bivariate
diffusion option pricing literature. If the risk orthogonal to the underlying asset return constitutes
part of the return on another primary asset, e.g., volatility is a traded asset, the model immediately
becomes a straightforward complete market economy in which the well-known contingent claim
pricing result prevails. If the orthogonal risk is not part of the return on another primary asset,
the result in this article provides a solution to the option pricing problem. Since any two bivariate
diffusion models with only a difference in their Brownian innovations have the same distribution
(weakly equivalent), it is futile to distinguish two models unless a specific economic factor can be
further attached to the volatility variable. Until then, the minimum martingale measure appears
to be the most sensible result. It is also clear that the pricing problem of the latter case is a more
relevant economic issue, and its solution is provided in this article.

5 Bivariate diffusion option pricing models revisited

As discussed in Section 2, many bivariate diffusion models in the literature are special cases of the
limit model. Theorem 2 can thus be directly applied to these models to derive their corresponding
option pricing results. The minimal martingale measure result in Corollary 1 is, however, a more
convenient device in deriving option pricing models. In this section, we use this approach to analyze
the option pricing models of Hull and White (1987), Wiggins (1987), Scott (1987), Stein and Stein
(1991) and Heston (1993).



Hull and White’s (1987) bivariate diffusion model under P*can be expressed as

dXy = (r+wvh)Xedt + VR X dWie (22)
dhy = (Bo+ Bihi)dt + 1hidWht + Yoy dWoy (23)

which is a re-parameterization of (7) and (11). Note that we have slightly generalized the model
by introducing a parameter 3y, which equals zero in Hull and White’s (1987) model. By Corollary
1, the system under Q* must become

dX; = rXedt + VI XedW5, (24)
dht - [5() + (,61 - ’lﬁl&))ht]dt + wlhtdW{"t + szhtdWQ*t (25)

When 11 = 0, the innovations of the return and volatility are independent, and the premium
for volatility risk equals zero. This justifies the first result of Hull and White (1987). As to the
correlated case of Hull and White, our result implies that the volatility risk premium can become
zero only when the unit risk premium for the underlying asset, w, is zero. In other words, unless
both 1 and w are zero, the volatility risk must be priced.

For Wiggins’ (1987) model, we re-parameterize the system in (7) and (10) and state them as
follows:

dX; = (r+wvh)Xedt + VR XedWyy (26)
dinhy = (Bo + Bilnhy)dt + P1dWiy + odWay (27)
Invoking Corollary 1 yields the system under measure Q* as follows:
dX; = rXudt + X dW5, (28)
dinhy = (Bo — 1w + Bilnhy)dt + Y1 dWT + adWoy, (29)

In contrast to Wiggins’ (1987) conclusion, the result above suggests that the volatility risk
orthogonal to the asset return is not compensated irrespective of whether the underlying asset
is a market portfolio or individual security. In terms of Wiggins’s (1987) notation, our result
implies ¢(-) = 0. The discounted expected option payoff, with respect to the dynamic in (28)
and (29), must satisfy the Kolmogorov backward equation, which in turn leads to Wiggins’ (1987)
partial differential equation for option price. One should not over-extend the conclusion of the
above result, however. As discussed in the preceding section, the orthogonal risk in the context of
stochastic volatility model is not equivalent to the orthogonal risk in general, for example, another
asset with an independent return. It nevertheless suggests that a hedge portfolio consisting of the
underlying asset and its option should command a zero risk premium if the hedge portfolio’s return
is uncorrelated with the underlying asset.

The model of Scott (1987), Stein and Stein (1991) and Heston (1993), which is stated earlier in
(7), (12), (13) and (14), can be re-parameterized to yield

dX; = (r+wVh)Xedt + Vi XedWry (30)
do; = (Bo+ b19;)dt + v1dWig + padWoy (31)
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Applying Corollary 1 gives rise to the system under measure Q*:

dX; = rXidt + /b X:dW7, (33)
doi = (Bo— 1w + Brgp)dt + p1dWiy + hodWs, (34)
he = ¢} (35)

The price of an option can be computed by taking expectation of its payoff using the above
system and then discounting it by the risk-free rate. The partial differential equation of Scott
(1987), Stein and Stein (1991) and Heston (1993) is satisfied by applying the Kolmogorov backward
equation to this entity. There is nevertheless one important difference between their results and the
one in (33), (34) and (35). The volatility risk premium is left unspecified in their models, whereas
our result implies a definitive relationship between the risk premium for the underlying asset and
that for the volatility. Similar to the earlier discussion on Hull and White’s (1987) model, the
volatility risk premium can become zero only when ¥; = 0, or w = 0, or both.

The limit result also suggests a way of approaching the model of Johnson and Shanno (1987) and
that of Melino and Turnbull (1990). As pointed out in Duan (1996b), the limit of the augmented
GARCH process can be made to include their models by defining h; as a product of the auxiliary
variable ¢; and a power function of X;. There is one inherent technical difficulty, however. Since
power function generally fails to satisfy the Lipschitz and growth conditions either at infinity or zero,
the existence and uniqueness of the solution to such bivariate diffusion model become unknown. If
one assumes that the solution to their bivariate diffusion models exists and is unique, then the weak
limit of the locally risk-neutralized measures will continue to be a minimal martingale measure.

6 Conclusion

The literature on option pricing under stochastic volatility can be grouped into two categories — the
bivariate diffusion and GARCH approaches. These two strands of option pricing models are unified
by a convergence result presented in this article. The GARCH option pricing model is shown to
weakly converge to a bivariate diffusion option pricing model, and this model can be specialized
to many existing option pricing models. The convergence result for option pricing is built upon
the idea of Nelson (1990) and Duan (1996b) that the GARCH process can be used to approximate
the bivariate diffusion model. Our result goes beyond providing new theoretical insights into the
literature of option pricing with stochastic volatility. The convergence result offers a practical way
of implementing the bivariate diffusion option pricing models. In the bivariate diffusion framework,
the volatility is not observable and parameter estimation can be difficult. The GARCH model, on
the other hand, can be easily estimated and the conditional volatility is readily available. This fact
makes the use of the GARCH approach attractive for both estimation and option pricing, even if
one prefers to model the asset return as a bivariate diffusion process. The limit result can also be
used in a reverse manner. One can tap into the set of numerical option pricing techniques already
developed for diffusion systems to compute option prices even if the GARCH option pricing model
is one’s preferred choice.
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7 Appendix
Proof of Theorem 1.
Invoking the LRNVR, we have under the equilibrium pricing measure @)
X(n)

In— ks :(r—%h(") /e 5

)
X (k-1)s

where sks|f ) s ~ N (0,1). This relationship can also be written as

i~ =+ wy A = 5h)s + VR — V)V
(k—1)s

Comparing it to (4) yields e}, = exs + wy/s. Substituting this relation into (5) gives rise to the
desirable result.O
Proof of Theorem 2.

The approximating augmented GARCH(l,l) process can be written in a difference form

AlnX,gZ) = (r— )s + h,(: EraV/s
Acf)gz)ﬂ)s = (w+ CI4)8 + ¢k5 (a1 + g2 +as3qz — 1)s +

™as(Z;(s) — ga(5)) + as(ZP (s) — as(s)]V5 +
(ZZ() ) — qa(5))V's + (qa(s) — qa)V/s +
Mlan(qa(s) — g2) + as(gs(s) — g3)]V/5.

where
a(s) = EUZP (),
as(s) = E9Z (),
a(s) = E2AZ(s)).
Suppose
ga(s) —qa = —movs+O(s),
az(q2(s) — g2) +az(gs(s) —g3) = —mv/s+O(s).

where 719 and 77 are two finite constants. The system for ¢§§? can be written as

Acf)gz)ﬂ)s = (a0 +q1—m0)s + (a1 + a2q2 + azgs —m — 1)¢;(£)8 +
3 s (ZE P (s) — aa(s)) + a3(Z; P () — aa(s)]V5 + (Z2 D (s) — qa(s))/5 +
O(s?)
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The term O(s%) can be ignored in the limit because its order is higher than s. Invoking Lemma 1
again yields

1
dnX, = (r—iht)dtJr\/h_tdet, and

dr = [ao+qa—no+ (o1 + azqe + azgs — m — D)gy]dt + vepedWs + v/ 1 — p2dW3,

where WY, and W3, are two independent Q*-Wiener processes. Note that o;; is the same as the

one under measure P because ZZ(Q)(S> converges to Z,52) in probability, and the same is true for

Z,:(g)(s) and ZZ(4) (s). It remains to show that 7o, m1, W7, and W3, are as stated in the theorem.
Consider any differentiable function of g(e) such that if ¢ approaches either +o00 or —oco, then

g(s)ff%82 goes to 0. It follows from Rubinstein (1976, p.421) that if € is a standard normal random
variable under a probability measure 7, then

ET[g'(e)] = Covle, g(e)]-

This relationship is used to derive the following result for ¢ = 2,3 or 4. For the following application,
function g; is not differentiable only at one point. Since this point has a zero probability measure,
we can still apply the above result. Thus,

6i(s) —a = E°gi(ef —wvs)] — B [gi(en)]
= E"[gi(er, — wV/5)] — E”[gi(ew))
= —E"[gi(er)lw/s + O(s)
= —Covlle, gi(er)wy/s + O(s)

= —woiV/s+ O(s)
Thus,
o = Woi4,
m = w(ao12 + aso13).

This in turn allows us to rewrite the limit model as follows:
1
dinX, = (r+wvh;— Sh)dt + Vhid(W3, — wt), and

dor = [0+ qa+ (1 + aaqe + asqs — 1)@ dt + veped(Why, — wit) + vy /1 — pZdWs,

By comparing this limit model with the one in Lemma 1, the results for W7, and W3, are established.O
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