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Abstract

Risk-neutral pricing of derivative assets (i.e., independent of the risk premium for
the underlying asset) has typically been misconstrued as an inherent feature of complete
markets since the seminar work of Black and Scholes (1973). We first construct a semi-
recombined binomial lattice, which constitutes a complete-market model, and then use
it to show that risk-neutral pricing is not an inherent property of complete markets.
The paper shows that risk-neutral pricing is a result that has more to do with the
assumption typically adopted to describe the price dynamic of the underlying asset.
The limiting model of our semi-recombined binomial lattice is the continuous-time
version of the GARCH option pricing model in Kallsen and Taqqu (1998). Over a set
of discrete time points, the limiting model coincides with the GARCH option pricing
model first derived by Duan (1995).
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1 Introduction

Black and Scholes (1973) and Merton (1973) established the celebrated option pricing the-
ory, which has profoundly altered the course of academic research and industrial practices
since. One of the most cherished results of the option pricing theory is its implication on
risk-neutral valuation of derivative contracts, which was further developed in Cox and Ross
(1976), Harrison and Kreps (1978) and Harrison and Pliska (1981). Risk-neutral valuation
is typically attributed to complete markets, because replication (static or dynamic) of con-
tingent claims is possible. In order to avoid arbitrage, contingent claims must therefore be
priced identically to the values of their replicating portfolios. As a result, one can sim-
ply consider a hypothetical market in which agents have risk-neutral preferences. Under
this hypothetical risk-neutrality, contingent claims can be priced by taking discounted ex-
pected value as long as the underlying asset also behaves according to the implication of
risk-neutrality. Specifically in the diffusion modeling framework, one only need to change
the drift term to the risk-free rate of return and keep the diffusion term intact. In other
words, the expected return is changed to the risk-free rate but the volatility remains un-
changed. This result naturally suggests that the risk premium of the underlying asset (or
the risk-adjusted expected return) plays no direct role in determining the values of derivative
contracts written on this underlying asset. For pedagogical purposes, the same risk-neutral
valuation conclusion is often demonstrated using the binomial lattice, owing its popularity
to Cox, Ross and Rubinstein (1979). This result is typically interpreted as the implication
of complete markets. Since the contingent claim can be exactly replicated by the existing
assets, the physical probabilities of states are irrelevant and there is no unhedgeable risk
that requires the consideration of risk premium (see, for example, Wilmott (1998, p.74)).

This interpretation prevailing in the literature is, however, misconstrued. The risk-neutral
valuation result turns out to be valid for diffusion models and others that bear similar
distributional characteristics, but it is invalid in general. In this paper, we construct a semi-
recombined binomial lattice to ascertain this claim. The semi-recombined binomial lattice
constitutes a complete market in which all contingent claims can be perfectly replicated.
However, the arbitrage-free values of contingent claims still depend on the risk premium
of the underlying asset whose price dynamic is governed by the semi-recombined binomial
lattice. In other words, the risk-neutral valuation principle is invalid in this complete market.
In fact, this model serves to show that risk-neutral valuation has much to do with specific
distributional features of a given model. To say the least, it does not follow logically from
market completeness.

The semi-recombined binomial lattice behaves like the conventional binomial lattice up to
some pre-specified time point and starts to branch out in an overall non-recombined fashion
but with recombined sub-lattices until reaching another pre-specified time point. The process
of branching out with recombined sub-lattices continues until reaching a final time point. The
overall non-recombinedness of the lattice is caused by stochastic volatility, which evolves in



a GARCH-like manner over the pre-specified time points. Although we show that stochastic
volatility is crucial in obtaining our result, it alone is insufficient to establish the relevancy of
risk premium. In fact, we need to have stochastic volatility driven by unanticipated return
shocks to reach such a conclusion. Loosely speaking, a change of the probability measure for
the original economy to one for the hypothetical risk-neutral economy alters the conditional
mean as well as what is regarded as an unanticipated return shock. Risk premium of the
underlying asset becomes important because the unanticipated return shock in the original
economy is no longer an unanticipated shock. It requires an adjustment with risk premium
to remain as an unanticipated return shock in the risk-neutral economy. Interestingly, the
empirical success of the GARCH process in modeling volatility has a great deal to do with
using unanticipated return shocks to drive the conditional volatility.

If one increases the number of binomial steps, the semi-recombined lattice converges to a
continuous-time version of the GARCH model first proposed by Kallsen and Tagqu (1998).
This continuous-time version of the GARCH model uses geometric Brownian motions to
patch together the in-between points of a discrete-time GARCH model. Kallsen and Taqqu
(1998) showed that this continuous-time GARCH model constitutes a complete market and
derivatives can be priced by arbitrage and the pricing result is in agreement with that
of Duan (1995) for which a discrete-time GARCH model was used. Duan’s (1995) result
suggests that the risk premium of the underlying asset will affect the price of the derivative
contract. Since the discrete-time GARCH model does not constitute a complete market, such
a result may not be surprising. However, the work of Kallsen and Taqqu (1998) suggests
that the conclusion is not simply due to market incompleteness. The limiting model of our
semi-recombined binomial lattice under the complete-market pricing probability turns out
to be a particular continuous-time GARCH model same as the pricing conclusion derived by
Kallsen and Taqqu (1998), which in turn agrees with Duan (1995) over the pre-specified set of
time points for which the discrete-time GARCH model is defined. The relationship between
this paper and Kallsen and Taqqu (1998) is, in a way, analogous to that between Cox, Ross
and Rubinstein (1979) and Black and Scholes (1973), except for their opposite conclusions
on the relevancy of risk premium. Rubinstein (1976) and Brennan (1979) have shown that
risk-neutral valuation can also be established in some incomplete markets with the help of
some combinations of restrictions on distributions and on the family of utility functions. The
relationship between Duan (1995) and Kallsen and Taqqu (1998) can therefore be likened
to that between Rubinstein (1976) and Brennan (1979) on one hand and Black and Scholes
(1973) and Merton (1973) on the other, albeit their opposite conclusions on the relevancy of
risk premium. The relationship among these papers is summarized in Figure 1.

Inclusion of risk premium in the pricing of derivatives is not a mere theoretical interest.
We show that the volatility level under the complete-market pricing probability is typically
higher than that under the physical probability. This suggests that the price assessed ac-
cording to the complete-market pricing probability will be higher in comparison to that of
using the physical probability. Given the general empirical evidence of underpricing by the
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Black-Scholes model, it is interesting to observe that risk premium can serve to explain this
underpricing pricing phenomenon and to potentially close the gap between the option pricing
theory and the empirical regularity.

2 A semi-recombined binomial lattice

In this section, we present a binomial lattice for asset prices that is overall non-recombined
but many of its sub-branches are recombined. Let (€2, F, 7) denote the underlying probabil-
ity space. Denote by {e;71 =1,2,---} a sequence of independent standard normal random
variables defined on (€2, F, 7). Consider a finite time interval [0, 7], where T" is an integer
representing the number of discrete time periods of unit length. Divide this time interval
into nT" sub-intervals of length s = 1/n. Let ¢y, = [%} denote the largest integer such that

it is smaller than or equal to % For k = 1,2,---,nT, we define the following stochastic
process with the known initial value (Sp, hy):

k
(n) _ (n) (n) (n)
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where ¢(¢r,) is the unique solution to Pr™ {e; > c¢(¢pn)} = pfb?’n; Fs,... be the o-field gen-
erated by {e;i =1,2,---,n¢y,} with Fy being defined as the trivial o-field; fy > 0,8, > 0
and (5 > 0; 7 is a constant interest rate (continuously compounded) over a period of unit
length; and A\ can be interpreted as the unit risk premium, which will become clear later.

Note that the above definition ensures that h((;;)n 118 Fy, ,-measurable. Thus, ug;)n, dg;)n and
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pfb?n are Fy, -measurable. The max and min operators are used to ensure v < pgz)n <l-w

so that the model will not degenerate. From time 0 to 1, the above stochastlc i)rocess is

a standard recombmed binomial lattice with the up (down) move multiplier u" (do ) and

the probability p () (1-— pé ) which are determined solely by the known constant hy. As the

stochastic process progresses into the 1nterval between time 1 and 2, the lattice begins to
branch out depending on the value of h2 , which is in turn determined by the values of hq,
So and S7. Each branch, however, forms a recombined sub-lattice until reaching time 3. The
process of branching out recombined sub-lattices continues. The up (down) probability is
fixed within a recombined sub-lattice and differs for a different recombined sub-lattice. This
semi-recombined binomial lattice over [0, 2] is illustrated in Figure 2.

Although we use the max and min operator to ensure pgz)n being a legitimate probability

bounded between v and 1 — v, it can be shown that for large n, pg;)n naturally falls between

v and 1 — v in m-probability. Formally, we let

T {h(”)
exp ( ¢k +1) _ d(n)
*(n) _

n ¢k,n

Py, ™ _ g0 ' (6)

ud)k n d)k,n

(n)

We prove in Appendix that p¢” — 5 in m-probability as n — oo. Since the partlcular

combination of max and min operators in defining the relationship between p¢ ) and p¢k

is a continuous function, we conclude that p¢k)n % in 7-probability as n — oco.

The conditional mean and variance of the continuously compounded return over one
discrete time period of unit length can be derived. They are

S(”)
S(”) o
d)k:,n
= r+ (2}7(") — 1) \/nhggnﬂ
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where Oy (n—lq denotes the quantity whose L¥-norm is in the order of % The technical

details are given in Appendix. For discussion purposes, we will view the conditional mean

and variance as r+ \ h((;;)n 1= %hgz)n .1 and hg}?n 1, respectively. In other words, we restrict

our discussion to the case of v < pgz)n < 1 — v and ignore the O (%) and O (%) terms.
The above result implies that h((;;)n 41 s indeed the conditional variance. The stochastic
process {hl, hg"), hg"), = } is thus the same as Engle and Ng’s (1993) NGARCH(1,1) dynamic
for the conditional variance of the continuously compounded asset return over integer time
points. The conditional variance is shocked by the unanticipated return innovation over two

adjacent integer time points. It is an unanticipated shock because (2pgz)n — 1) ,/nhgz)n 41 can

be interpreted as the total risk premium, which for all practical purposes equals \y/ hfb?n 1=

%hggn +1- Parameter A can be interpreted as the unit risk premium (per unit of conditional

standard deviation). As usual, the term —%hg}?n 41 arises naturally when one deals with
continuously compounded returns. Parameter 6 captures asymmetric responses to positive
and negative unanticipated return shocks. If 8 = 0, the volatility dynamic reduces to the
linear GARCH(1,1) model of Bollerslev (1986) and Taylor (1986).

3 Risk premium dependent valuation in complete mar-
kets

The semi-recombined binomial lattice constitutes a complete market. This is obvious be-
cause any contract contingent on S,(CZ) can be replicated by locally forming a portfolio of
the underlying asset and the risk-free asset. The standard arbitrage argument easily gives
rise to the so-called risk-neutral probability of the up move for all binomial steps within
a recombined sub-lattice in the interval [¢g n, dr.n + 1] as [exp (%) - dg;)n} / (ugz)n - dg;?n)

Putting together the whole complete-market pricing system, we have

k
(n) _ g (n) (n)
Sks - S¢k,n H |:u¢k,n1{6i26* (¢k,n)} + d¢k,n1{ei<c* (¢k,n)}:| (9)
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n k,n
Up,,, = €Xp|r+\—— (10)
h(")
(n) — ¢k,n+1
dg,  =~—= exp|r— — (11)
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¢k,n ¢k,n
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hitn = ﬂowlhéi?wﬁa{ln(gﬁf’" )— e =) -0 hf;z?x}&

¢k,n71

where c*(¢y,,) is the unique solution to Pr™ {e; > ¢*(¢pn)} = qék) Note that 1{c,>cx(gy..)} 18

simply a Bernoulli random variable with a probability of obtaining 1 at qé One can always

construct the sequence differently as opposed to using {¢;;7 = 1,2, --} as is in here. As long

as qé") is maintained, all pricing systems will be distributionally equivalent. Because h((;;)n 1

is bounded below by By > 0, we have 0 < gy, ) < 1 always. Unlikely pé") in the preceding
section, there is no need to use the max and m1n operators to ensure a legitimate probability.

In fact, this is the reason for having ufﬁk) and d¢ in this particular form because for any

n, the risk-neutral probability qgli)n always remains strictly between 0 and 1.}

Since the up and down moves depend on the realization of the process up to the be-
ginning point of a discrete period of unit length, all binomial steps within a recombined
. 1 - (n)
sub-lattice must share the same up and down risk-neutral probability. Note that q¢

globally stochastic but locally deterministic due to the fact that both wu, ”) and d¢k are
Foy ,-measurable. In this market characterized by the semi-recombined blnomlal lattice,

qg]z)n is stochastic and is a function of the total risk premium (2p§)k)n71 — 1) W/nhm _ (or the

unit risk premium ) unless 2 = 0. In other words, the so-called risk-neutral probability is
no longer independent of the expected return of the underlying asset. To avoid confusion,
we will refer to qgli)n as the complete-market pricing probability.

If hg;)n 41 1s aconstant, i.e., 31 = B2 = 0, the complete-market pricing probability becomes
a constant and does not depend on the underlying asset’s risk premium (or expected return).
The lattice becomes a standard globally recombined binomial tree. Under such a scenario,
the standard risk-neutral valuation result prevails; that is, the price of a derivative contract
is independent of the expected return of the underlying asset. Our result has a profound
implication for the general option pricing theory. Specifically, complete markets per se do
not give rise to risk-neutral valuation of derivatives. The standard result has much to do

n the Cox, Ross and Rubinstein (1979) constant-volatility construction, u = exp(c/y/n) and d = 1/u.
The corresponding risk-neutral probability is ¢ = ﬂuﬁgﬂ. Although one can ensure 0 < g < 1 for large
enough n, ¢ may be greater than 1 for smaller values of n. This is not a serious constraint when parameters
are constant because the threshold value for n can be determined once and for all. In the stochastic volatility
model, a similar construction will cause the threshold value of n to be state contingent. In other words,
for a given n-step lattice, some sub-lattices may not be consistent with the basic requirement for being a
legitimate model for asset dynamics.



with other distributional features of the model as with complete markets.

Is stochastic volatility in complete markets the root cause for the breakdown of the
standard risk-neutral valuation conclusion? The answer turns out to be a negative one. We
now show why it is the case. If we replace equation (5) by

S(”) 2
ln( e )—9 hf;;)n} : (14)
Sd)k:,n*l 7

we still have stochastic volatilities except that the conditional volatility is shocked by past
returns rather than past unanticipated return innovations. This change still gives rise to a
complete market characterized by a semi-recombined lattice. The resulting pricing system
has a quite different theoretical feature, however. Specifically, qé:)n is stochastic but is no

longer a function of the risk premium (Zpgz)n_l - 1) ’/”hsz)nv suggesting that the standard

g1 = o+ Bibg,) + B

risk-neutral pricing conclusion prevails in this model. In summary, complete markets do
not necessarily lead to the conclusion about the independence of risk premium (or expected
return) of the underlying asset for pricing derivative contracts. Other features of the model
are also important. If volatility is deterministic, the standard risk-neutral pricing conclu-
sion is valid. If volatility is stochastic, in order to obtain the standard risk-neutral pricing
conclusion, the volatility dynamic must not be shocked by the past unanticipated return
innovations.

Denote the expectation and variance under the complete-market pricing system in equa-
tions (9)-(13) by E*(-) and Var*(-).

[ (Shontn _ L, o) !
E* | 1n S(# fd)k,n = r— §h¢k’n+1 + 01 % and (15)
L ¢k,n i
[ S(”) 1 1
Var® m( ;,E;:)H) Foun| = B 40 (g) (16)
L k,n .

Note that the derivations are similar to and, in fact, simpler than those for equations (7)-
(8) because 0 < qéz)n < 1 always. These results imply that the conditional mean under
the complete-market pricing probability is changed to the risk-free rate but the conditional
variance remains unchanged. The unanticipated shock (in terms of the complete-market
pricing probability) becomes In (Sé:)n /S (:)n) — (r — %hg}?n +1)- The asymmetry parameter

governing the conditional volatility dynamic is thus changed from 6 to 6++/n (Zpgz)n_l — 1) +

2 hgz)n (or loosely 6 + \).



The complete-market pricing system and the system under the physical probability mea-
sure differ in their asymmetric response parameters. This difference has an important impli-
cation for the overall volatility level of the cumulative asset return. Let ¢ = 31 + Bo(1 + 6?)
and ¢ = G + (2 {1 + (0 + )\)2}. Denote by o(1) the term tending to 0 as n goes to co. We
have the following results (see Appendix for details):

(n) 2
(%) -5 [ (&)l )|~

E

BT | 1-gT i
_ 1*‘/’;—TT‘P1 {hl }—FO(l) 1f907£1 (17)
M2—l+h1T+o(1) if o =1
and
2
g T sm
E (2= =Y B |In | = | | Fia | | |F
(so) 2 (sﬁa 1%
B 2] o)) iU AL (18)
ﬁoT(2T*1) +hT +o (1) ifyp=1

Note that if 8 and A share the same sign, then ) > ¢. By ignoring the negligible terms, we

have
E*{ |In (SC(FH)> - iE* In (Si(n))‘?_l]- 2 Fo
SO i=1 Sz(ﬁ)l ' ]
> E{ |In (S(Tn)) —iE In (ﬁ) ]—“~_1”2 Fo (19)
= S[) L Sl(ﬁ)l 1 )

if sign(d) = sign(\). Since equity returns are known to exhibit a negative asymmetric
volatility response to return shocks, we expect § > 0. This in conjunction with a positive
risk premium, i.e., A > 0, suggests that the complete-market pricing system should use a
cumulative volatility that is higher than the cumulative volatility implied by the physical
system. A similar conclusion was first established by Duan (1995) in the GARCH frame-
work, although his model constitutes an incomplete market. The difference in the cumulative
volatility levels between the complete-market pricing system and the physical system is of
course due to our modeling of conditional volatility as a function of the unanticipated com-
ponent of the price change instead of the total price change. This modeling approach is, in
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fact, the essence of the GARCH model, and has a great deal to do with its empirical suc-
cess. Intuitively, it is nonsensical to let the conditional volatility respond to the anticipated
component of the price change because the anticipated component can hardly be viewed as
a shock (or surprise).

A logical implication of (19) is that the prices of derivative contracts are direct functions
of the risk premium for the underlying asset. This complete-market pricing theory further
suggests that the historical and/or realized volatility of the underlying asset should be lower
than the Black-Scholes implied volatilities for the options traded on this asset. The higher is
the risk premium, the larger is the discrepancy. Interestingly, the empirical evidence shows
that the historical volatility is indeed substantially lower than the Black-Scholes implied
volatilities.

4 Limiting models

In this section, we study the limit of the semi-recombined binomial lattice model and that of
its companion pricing system. We first define a family of continuous-time, right-continuous
stochastic processes over [0, 7], denoted by {S M:n=1,2,-- } They are constructed from

the semi-recombined lattice by setting St(”) = S,SZ) for ks <t < (k+1)s. Clearly, the sample
paths of S™ belong to D[0,T], the space of functions on [0, 7] that are right-continuous
and have left-hand limits. Let D denote the o-field of Borel sets in D[0, T for the Skorohod
topology. The distribution on (D[0, 7], D) induced by S™ in accordance with equations
(1)-(5) is denoted by P, and the one induced by S™ in accordance with equations (9)-(13)
is denoted by @,. Denote weak convergence in measure by =-.

The following result implies that the limiting model of the semi-recombined binomial
lattice is the continuous-time version of the NGARCH(1,1) model, a slightly more general
than the continuous-time version first used in Kallsen and Taqqu (1998).

Theorem 1 For S™ in equations (1)-(5), S™ 2 S (i.e., P, = P) as n — oo, where P
is the distribution on (D[0,T], D) induced by S, a stochastic process over [0,T] evolving as

dlnS, — (7“ + oy — %ﬁ) dt + o, dW, (20)
ol = hy fori—1<t<i (21)
hi = o+ Prhic1+ Bohima [(Wisa — Wisg) — 9]2 (22)

with the known initial value (Sp, hy) and Wy is a Wiener process.

Proof: see Appendix.
Note that the limiting model, as a result of introducing parameter 6, allows for the asym-
metric volatility responses to positive and negative return innovations. The limiting model
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is essentially the NGARCH(1,1) model of Engle and Ng (1993) connected over discrete time
points piecewise by geometric Brownian motions. Under the limiting model, the asset price
process has continuous sample paths but the volatility takes jumps at those pre-specified
discrete time points. Because of this feature, the limiting model constitutes a continuous-
time complete market and the standard martingale pricing conclusion of Harrison and Pliska
(1981) should therefore directly apply. Indeed, that is the conclusion of Kallsen and Taqqu
(1998).

The relationship between the semi-recombined binomial lattice and the continuous-time
GARCH model can be likened to the one between the standard binomial lattice and the geo-
metric Brownian motion. They are complete market models of discrete-time and continuous-
time counterparts. It is therefore natural to expect that the pricing conclusion of the discrete-
time model will carry over to its continuous-time equivalent model. Indeed, there is a weak
convergence result for the pricing system.

Theorem 2 For S™ in equations (9)-(13), S™ 2,5 (i.e., Qn = Q) as n — 0o, where Q
is the distribution on (D[0,T], D) induced by S, a stochastic process over [0,T] evolving as

dlnS; = (r - %o—f) dt + oy AW (23)
o = hy fori—1<t<i (24)

2
hi = Bo+ Brhi—1 + B2hi—y [(va_l - Wi,y —60— )\} (25)

with the known initial value (Sp, h1) and W is a Wiener process.

Proof: similar to Theorem 1.

As expected, our limiting result agrees with the pricing result of Kallsen and Taqqu
(1998), which was directly derived using the continuous-time version of the GARCH model.
If we restrict the attention to the discrete time points {0, 1,2, ---, T}, the pricing conclusion
is then the same as that of Duan (1995), where the theoretical importance of the risk premium
for the underlying asset, i.e., A, was first established. The results in this paper and Kallsen
and Taqqu (1998) simply show that the conclusion of Duan (1995) is not simply due to
incompleteness of the discrete-time GARCH model. As we have discussed in the preceding
section, complete markets per se cannot render the risk premium of the underlying asset
irrelevant for the purpose of derivatives pricing. In fact, the irrelevancy typically viewed in
the options literature as an inherent feature of complete markets has much to do with the
specific distributional feature of the model rather than with complete markets.
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5 Appendix

k

5.1 p;z(i? converges to 1/2 in probability

First, we note that by the Mean Value Theorem,
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1+ B,
where
2
. 2 1 (r—i—)\ hg;)nﬂ) 1 . o 3
A =90 T () - =l <_n_ h¢k,n+1>
4n3/2\ [hg 1y n?2 [hy! 1214 /by’ 1

(26)

11 1 o
SN n<A‘§ h¢>]

By Holder’s inequality, we can bound the first part of the right-hand side of the above
inequality as follows:

|
2 1+Bn L2'

1 11 1 [
112+ = i
H {1 + B, ] l2 Tavm (A 2 h%n“)]
1

2
M Rx 1 e |
Moreover, for € > 0,
nl=e L —
1+ B, 4
= ple 1ann L4—>0asn—>oo.
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This is true due to two facts. First, B, is in the order of 1. Second hgz)n 41 is bounded

S(")
below by 3y > 0 and is a quadratic function of In ( (f)’“ = ), which has values in the form of
S¢k,n71
(r +i\ =2 — (n =)/ %) and a corresponding probability of ( T; ) (pg;?nﬂ) (1 — pc(zﬁ?nq)
fori=20,1,2,---,n. Therefore all terms in B,, involving hg;)n 41 have finite fourth moments.

Similarly, |5 + ﬁ ()\ -3 hg;)n +1) L < 00. The second part of the right-hand side of (26)
is in order of % because n'~¢ ﬁg: 2 0 as n — oo for the same reason as before. Putting

1—e

them together, we have for any ¢ > 0,
n — 0 asn — 0.

L1 (1 [
p¢>k,n 2 2\/% ( 2 Dk,ntl L2

«n) 1 1 I [ 1
p%n = 5 + m ()\ — 5 hd)k’nJrl) + Os (g . (27)

Finally, we compute

In other words,

o) _ 1) 1 (1 o 0 1)

Porn 2llz2 H2 n( 2V "orntl e N/ g2
1 1 o 1

< —|(x=2y/n o(5)
~ 2yn ( 2 %“) L2+ n

L[

— 0 asn — oo (because ()\— 3 hék)ﬁl) < 00).
: L

(n)

k,n

Thus, p(’; converges to % in L?-norm and consequently converges in probability.

5.2 Derivations for the conditional mean and variance of the semi-
recombined binomial lattice

The conditional mean can be computed as follows:

(n)
(n)
Sd)k,n

n¢k,n+n
_ (n) (n)
= E{ > I [uf) Lesewnny + 4y ey ]

E

f‘z’k,n]

f¢k,n}

14



- . h((;z:)n"'l hgz)n—kl n (n) (n) \" ¢
— Z T4 iy —— — (n — i)\ —=— <Z>(p¢kn) (1—p¢k’n)

_ Wbl o ¢kn“z@<.)(p%)@'(l_p;?n)“

AT - 00 (3) oA <1
= r+ (1 —2v), /nh((;;)n+1 if p((;;) =1—v . (byequation (27))
— (1 —2v), /nh((b?nJrl if p(”) =

The conditional variance can be derived as

[ 2
S
FE In ( ;k n+1) —r - (2p(") — 1) nhgz)’n+1] ‘7:¢k’n (by equation (28))
L ¢k:,n

Nk nt+n 2

= B{ %: 1MIUQ21&edmw»‘%dgllﬁxdmm»}—7“-(%ﬁ31—1) ”h$L+J Foxn

Lt=NPk,n+

2

B n . hl(lﬁz)n+1 ¢kn+1 (n) n (n) i _ (n) n—i
- ; t nh¢k,n+1 i (p¢k,n) (1 p¢k,n)
B a e () ™ (1 )

n 2;;(2 ”p¢kn) (p¢kn) (1-ri.)

= 45, (1= 23 ) PG

RS G+ 01 (L) ifv<pl) <1-

= Prntl (i)(”) RN v (by equation (27))
(1 —v)hy' 1fp¢kn—vor1—v

5.3 Derivations for two volatilities of the cumulative return

First, we consider

" + 4v(1 - v)1 ™ — p{"

{v<p(n)<1 —v} {Enl vor 1—v} %

(n)
H( {v<p(")1<1 v} + 4U(1 N U)l{l’(-n)lzv or 1—v} B 1) hz

i—

I

15



= Hl{”<”5")1<1”} Fa =)o iy T 1|, h{"
= |4v(1 —v) B L \/Pr{pl.ﬁl =vorl—uv}
— 0 asn— oo.
Thus,
1{”<p53)1<1—v}h’(n) +dv(1 — U>1{p§f)1:v or 1—u}h§n) = hl(n) + 01
Then

Y

I S;") T SZ(")
E{ ln(S[))—;E In W 11 -7:0
[T S(n) S(") |
= F In | = —FE|In|—= Fi1 Fo
{ % [ (s;a 57 )7
5 s
i (G7) — £ 1n (w)lﬂ—lﬂ
=k g(m st 1] Fo
X lln <§'(nL)1> —F lln <§®> fj_l

S(")
= (W
T n)
S
- LE\E o | <Gy
i=1 S,
- (n)
_ ;E{(l{v<p§n)l<1v}hl F (L= 0) b )‘}"

(by equation (8))
T

= Y E{n"
i=1

By equations (5), (7) and (8), we have

E {1 Fis}

7, 1

‘_71'0} +0(1). (by equation (29))

, (by Holder’s inequality)

(29)

(n) S('ﬂ) max (3,5)—1 f[)
o | B In( <
ijl Szgl

°(5)

B (n) (n) 25 L
= Bo+ Bk + Ba K {v<p(n)<1 U}hz L+ 4u(l — v)l{ ™) _yor 1- v}hz 1) +60°h; ) 4+ Oy (n)}

= G+ 51 o 1 + B2 (1 + 92) h —|— 01 (1) (by equation (29))
= 6o+ <Ph1>1 + 01 (1).

16



Recall that ¢ = 3; + B2(1 + 6?). This in turn allows us to obtain

E{hM R} = o+ B (MR} +o(1)
= fo+ Lo+ -+ B’ 2+ 0" Thy + 0(1)
ﬂ—g‘i%l + ¢ thy +0o(1) ifp#1 '

S( R i
T In ﬁ fifl fo
i— i—1
{ )

We thus have

Ly (35— 4 o) +o(1) if ¢ #1
? —1 B0+ hi}+o(l) ifp=1

{ BT 4 e [y — 2] o(l) ifp#1

ﬁ

BITD 4w T +o(l)  ifp=1"

We have therefore established equation (17).
By equations (13), (15) and (16), we similarly have (except that 0 < ql(”) < 1 always and
yields a simpler derivation)

E {1 Fia} = Bo+ Bl + B [(1+ (0 +2)°) i + 01 (1))
= o+ z/fhz(ﬂ +o1(1).

Recall that ¢ = (1 + (2 [1 + 0+ )\)2}. By an analogous argument, we obtain

T (n) 2
E* S E* S’(n Fiil| | Fo
=1 Sz 1

_T .
_ %+—Lll_w[1—£—0¢}+o<l> ot
BITD 4 T +o(1)  ify=1

Equation (18) is thus established.

5.4 Proof of Theorem 1

It suffices to show two things to complete the weak convergence proof for the processes over
[0,7]. First, if (In S pf +1) L, (In Sy, his1), then any finite-dimensional distribution of

17



{ln St("),i <t<i+ 1} converges to that of {InS;;7 <¢ < i+ 1}. This result can then be
extended to the entire interval [0, 7. Second, we need to show tightness over [0, 7.
Let ¢, be some positive value such that Pr{h;;1 > c¢.} < e. Denote the k-dimensional dis-

tribution of {(ln (St(f)/Si(")) oo, In (St(:)/S(") )) ity € 6,0+ 1]} conditional on (In S;, hit1)

te—1
by F™(X|InS;, hit1). The marginal distribution of (In S, h§j_)1) is denoted by G™(-,-).
Their corresponding distributions under the target process are denoted by F(X|In.S;, k1)
and G(-,-). We examine the distance between the two joint distribution functions evaluated
at any (k 4 1)-dimensional point Y = (yo.y1, -, yx) as follows:

FO (- 00) [ 0) 46O () = [ F (e ) [2,0) dG )|

2<yo

2<yo

< |
z2<yo

F(n) ((yb e 7yk) |va) - F((yl: e 7yk) |Z,UJ)‘ dG(n)(sz)

P ) ) a6 ) — [P () 2 0) dG( ).
Since F ((y1,- -+, yk) |2, w) is a bounded function,
/ F((y177yk)|zaw)dG(n)(zaw)_/ F((yl,,yk)|z,w)dG(z,w)‘—>Oaanoo
2<yo 2<yo

if (In 5™ hgi)l) L, (In S, his1). It remains to consider

/Z<yo
- 1 w<ce
/ZSyo {w<ee}

1wc
+/Z<y0 {w>ed)

Note that h;,; is bounded below by Gy > 0. By constraining h;; < c., we restrict to a
compact set of h;y1. Moreover, both F(™(X|InS;, hiy1) and F(X]|In S;, hiy1) do not depend
on In S; once h; ;1 is known. In other words, there exists n; such that for n > nq,

FO (g1, 0) |200) = F (g1, i) [2,0) | dG™ (2, 0)

F(n) ((ylv T 7y/€) |Z,’lU) - F((y17 T 7yk) |Z7w)‘ dG(n)(Z,’LU)

FO (g, m0) [2,0) = F (0, y) |2, )| G (2, w).

Lweea |[FO (@) |70w) = F (i) [22w)]| < e

because the standard binomial lattice weakly converges to the target process for every time
segment [i,i + 1] if (InS™, A = (In.S;, hisq). It follows that

1u)cE
/zgyo{g}

Note that

F(n) ((ylv T 7yk) |Z,ZU) - F((ylv o 7y/€) |Za w)‘ dG(”)(z,w) <e

FO () [2w) = F (g, ) J2,w)| < 1

18



because they are distribution functions. This then implies

1 w>C

/Z<y0 fw=ed}
/ 1{w>cé}dG(")(z,w).
2<Yo

< Pr {hgi)l > CE} :

FO (g, y) [2,0) = F (g1, ) |2, )| G (2, w)

IN

If (lnS , ZH) N (In S;, hiy1), there exists ny such that for n > ng,

‘Pr {hfi)l > ce} — Pr{hii1 > c}

<e.

Therefore, for n > max(ny, ny), we have

/z<y0

F(n) ((y17 e 7yk) |Z7w) - F((yb e 7yk) |Z7w)’ dG(n)(Z7w) S 3€

and then

F(n) ((y17' o 7yk) |Z7w) dG(”)(z,w) - /< F((ylv"'vyk) |Z,’LU) dG(sz)‘ —0
Z2>Y0

2<yo

as n — oo if (InS™, A" 25 (In Sy, hisy).

Since the finite-dimensional distribution of <ln Si(n),ln St(f ). In St(:)) is a continuous
function of <ln 5™ 1n (St(f)/Si(")) -+, In (St:)/ ,f:)l)>7 we have
(n) . (n) e
(IS, SEY, - S 2 (In S, In Sy, -+, In Sy, )

f(lnS 7h’7,+1) e (In.Si; hiy1).
We now turn to tightness. By Theorem 15.5 of Billingsley (1968), two conditions need to
be checked. First, for each positive n, there exist an a such that Pr {ln S(()") > a} <n

for n > 1. Since In S[()”) = InSp, a fixed value, this condition is trivially met. Sec-
ond, for each positive € and 7, there exists 0 < 6 < T and an integer n* such that

Pr{ sup ‘ln S — lnS )‘ > e} < nfor n > n*. It is clearly possible to find some ¢, > 0
|[T—t|<é

and a positive integer n; such that for n > nq, Pr { IlnaxT hi" > Cn} < n/2, The reason is
=12,

similar to the first part of the proof. By our construction of the semi-recombined binomial
h(n)

(n)
h! , . . .
L=, |5 = J—)over [i —1,4]. It is clear
n n n n

lattice, the step size is bounded by max (

19



(n) i i T G| |z _ Je
that under i:1r11712z}.>.§,T h;” < ¢, the step size will be bounded by max( ol SRV el I - )
over 0,7 with the binomial probability approaching 1/2. Tt is therefore always possible to
find 6 and ny such that for n > n.,

Pr {( sup ‘ln S™ _n St(")‘ > e> N (i_ranf’i.?;,T R < Cn)} < g

|[T—t|<6

Y

Finally, for n > n* = max(nq, ns),

Pr{ sup ‘ln S™ —In St(”)‘ > e}

|[T—t|<6
= Pr{( sup ’1n S™M _In St(”)‘ > e) N ( max A" < Cn)}
r—t|<s i=12T

+Pr {( sup ‘ln S™ _In St(”)‘ > e> N ( max A" > Cn)}
[r—t|<é =12, T
< n.

Tightness is thus established.
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Figure 1. A diagram of the relationship among various models.
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Figure 2. A semi-recombined binomial lattice (n = 3, i.e., 6 steps over
[0,2]; ¥ = 0) with the two middle sub-branches omitted.
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