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Abstract

A correctly specified time series model can be used to transform data set into an i.i.d.
sequence of standard normal random variables, assuming that the true parameter values are
known. In reality, however, one only has an estimated model and must therefore address the
sampling errors associated with the parameter estimates. This paper presents a new test that
does not rely on specifying any specific alternative model. The test explores both normality and
independence of the transformed sequence. Specifically, we utilize the theoretical properties of
the transformed residuals to construct a set of four test statistics, and for which the sampling
errors associated with any root-T consistent parameter estimates are eliminated. The size and
power of this new test are examined. We find the size of this test to be accurate for dynamic
models such as AR, GARCH and diffusion. The power of this test is also good in the sense that
it can reject a mis-specified model using a reasonable sample size. The test is then applied to
real data series of stock returns and interest rates.
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1 Introduction

Time series models are used in econometrics and statistics to describe data set recorded over a
period of time. The most pressing question is arguably about whether the given time series model
is a suitable specification for the data set. This paper provides a new test for addressing this
question. A time series model is a complete specification of the law governing the evolution of a
stochastic system that generates a data set recorded over time. It is quite common that the time
series model uses a dynamic location-scale specification, meaning that the conditional mean and
variance are specified as functions of the previous variables but the distribution of the standardized
random variable is not. Examples of the dynamic location-scale model abound. The ARMA and
GARCH models are such examples. There are also models that have a dependence structure beyond
location and scale. A good example of this type is the mean-reverting square-root diffusion process
(Feller process) that was adopted by Cox, et al (1985) to model interest rates. The conditional
distribution over a discrete time period under this model is a non-central chi-square that cannot be
reduced to a dynamic location-scale specification. For either case though, the assumed model has
a common feature that can be exploited in designing a specification test. As opposed to relying
on nesting the assumed model as is typically done, we propose in this paper a test that utilizes
the model specification as a transformation devise and examines the logical consequences of such a
transformation.

The classical way of testing a distribution assumption without relying on specific alternatives
is the Kolmogorov-Smirnov test or its variants such as the Andersen-Darling test. Such a test
measures the distance between the theoretical distribution under the assumed model and the em-
pirical distribution function. Different tests have different ways of measuring the distance with an
intent to detect the departure from the assumed distribution in certain dimensions. For time series
models, the distribution assumption does not completely characterize the system simply due to the
presence of dependence structure. The similar idea, nevertheless, applies. Diebold, et al (1998),
Diebold, et al (1999), Bai (2002) and Hong and Li (2002) have proposed to transform the depen-
dent data series using the conditional distribution function so as to obtain an i.i.d. sequence of
uniformly distributed transformed residuals. One can then proceed with the Kolmogorov type test
on the transformed data set. Diebold, et al (1998) and Diebold, et al (1999) have not dealt with
the complex issue of parameter estimation uncertainty that inevitably accompanies the parameter
estimate used in the conditional distribution function.1 Bai (2002) and Hong and Li (2002), on
the other hand, differ in their ways of dealing with parameter estimation uncertainty. Bai (2002)
employs the Khmaladze (1981) martingale transformation to rid off the parameter estimation un-
certainty. Hong and Li (2002) rely instead on a distance between a bivariate nonparametric kernel
density estimate and the bivariate uniform density, which after normalization is not subject to the
parameter estimation uncertainty.2

1The approach developed in Diebold, et al (1998) and Diebold, et al (1999) is more constructive in nature because
the approach is meant to identify the correct conditional density function. Parameter estimation uncertainty is left
unaddressed, however.

2Bai’s (2002) test has not truly utilized the i.i.d. property of the transformed data set. In a way, it is similar
to the Kolmogorov test that only tests the marginal distribution as opposed to the i.i.d. assumption. Hong and Li
(2002), however, use the bivarate uniform distribution in constructing their test, which specifically takes into account
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In the context of diffusion models, testing a specification without committing to a specific class
of alternatives has also been studied. The first paper is, to our knowledge, Ait-Sahalia (1996a),
in which the parametric density implied by the assumed diffusion model is compared to a density
estimated nonparametrically. Such an approach is innovative in the sense that the parameter values
are estimated by minimizing the distance between two densities where only the parametric density
depends on the model parameters. The minimum distance itself (after normalization) serve as a test
statistic to determine the adequacy of the assumed model. In other words, the parameter estimation
and the test statistic are performed in one step. In contrast, the tests proposed by Bai (2002) and
Hong and Li (2002) are of the two-step nature. First, some

√
T -consistent parameter estimate

is used to transform the data set. Then, one creates a test statistic that specifically explores
the properties of the transformed residual.3 Although circumventing the parameter estimation
uncertainty is desirable, it is not without costs; for example, it is not clear as to how one can
move from measuring the distance between two marginal densities as in Ait-Sahalia (1996a) to
that between two conditional densities without having obtained some parameter estimate first.4

Restricting to marginal densities will clearly weaken the power of test because the method does not
separate an i.i.d. data series from a dependent stationary series. As reported in Pritsker (1998),
the Ait-Sahalia (1996a) test has a slow convergence rate for interest rate data, which results in
significant over-rejections even using a fairly large data sample, a result mainly attributable to the
high persistence of the interest rate process. Relying on marginal densities (or distributions) has
another drawback. As noted in Corradi and Swanson (2002), such a test cannot distinguish two
different models that share the same marginal density (or distribution).

The test proposed in this paper differs from the papers discussed thus far. Our test is constructed
in three steps. First, we use the conditional distribution function under the assumed model to
transform the time series of size T into an i.i.d. sequence of standard normal random variables. In
this regard, the transformation is in spirit similar to Diebold, et al (1998), Diebold, et al (1999),
Bai (2002) and Hong and Li (2002). Second, we partition the transformed residuals into many
independent blocks of size n. Within each block of size n, we take advantage of normality to create
a vector of n random variables, which is done by sequentially adding one variable at a time to
a group of variables and then performing a nonlinear transformation. Third, the resulting i.i.d.
sequence of n-dimensional random vectors is used to create a chi-square test statistic free of the
root-T consistent parameter estimation error. The creation of the n-dimensional random vector
via the block structure is for the purpose of eliminating the parameter estimation error by linear
transformations. At the same time, the block structure allows the test statistic to exploit the

the i.i.d. feature of the transformed data set.
3Thompson (2002) proposes a two-step method as well. The parameter estimation uncertainty is dealt with by

simulating the test statistic’s distribution using the asymptotic distribution of the
√

T -consistent parameter estimate.
Corradi and Swanson (2002) is another such kind of test being proposed in the literature. They use a shorter
transformed series to construct the test statistic while relying on the parameter estimate from the longer data series
as a way of “eliminating” the parameter estimation error. The cut-off value for the proposed test is then obtained
by the bootstrap technique.

4It should be noted that Ait-Sahalia (1996a) has also developed a way of utilizing conditional density information
that measures “transition discrepancy” albeit such a test has not been empirically implemented in that paper. The
conditional version of the Ait-Sahalia (1996a) test is based on a theoretical observation that the time-derivative gap
between the forward and backward equations for stationary diffusions should be zero.
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independence nature of the transformed residuals under the assumed model. In this regard, the
test shares the spirit of Hong and Li (2002) in utilizing the independence property. The test is,
however, completely parametric and relies on asymptotic inference. In this regard, it shares the
same feature of Bai’s (2002) test. Similar to the Bai (2002) and Hong and Li (2002), the cut-off
value for testing is obtained from a known distribution. Thus, there is no need to perform computer
intensive simulation or bootstrapping to determine the cut-off value as required by Thompson (2002)
or Corradi and Swanson (2002).

It is worth noting that the proposed test does not require specifying an alternative class of
models to nest the assumed model. In this sense, the proposed testing method along with the ones
discussed thus far extends the line of the Kolmogorov test. Thus, they are subject to the same
weakness and enjoy the similar benefit. A test without specifying a specific class of alternatives
is expected to sacrifice some power of rejection, but it does not suffer the type-II error associated
with specifying a wrong class of alternative models. Different ways of constructing specification
tests without alternatives are likely to have different powers of rejection. Intuitively though, the
test utilizing the independence structure of the transformed residuals can be expected to have a
higher power. In this sense, our proposed test is intuitively appealing.

This new test actually consists of four test statistics with an intent to examine four aspects of
the transformed residual. We conduct a power analysis using two classes of models - AR-GARCH
and diffusion. We use several special cases of the AR-GARCH model to generate data sets and
test the constant mean-variance and normality specification. The sizes of the four test statistics
are all found to be accurate for a sample size as small as 200. The power of the test is also
quite satisfactory, and rejection occurs on different elements of the four test statistics as expected
and depending on which aspect of the generated data deviates from the assumed model. We also
generate three versions of the mean-reverting constant-elasticity-of-variance diffusion models to
simulate the interest rate data. We then study the size and power of testing the Vasicek (1977)
specification for interest rates, which is one of the three versions used to generate the data sets.
The sizes of the four test statistics are accurate for 500 data points (daily interest rates over two
years), which is the smallest sample size studied for the diffusion model. For the sample size of
2, 500 (daily interest rates over five years), the test has a moderate power of rejecting the Vasicek
(1977) specification if the data set is generated by the Cox, et al (1985) model. In the case of the
Chan, et al (1992) specification, the power of rejecting the Vasicek (1977) model is very high.

We also apply the test to the real data of the S&P500 index returns (daily). The results
indicate that the GARCH(1,1) model with conditional normality fails to pass the test for each of
two subsamples but the GARCH(1,1) model with a conditional t-distribution only fails to pass for
one of the two subsamples. When the test is applied to the Eurodollar deposit rate data (daily),
we find that both the Vasicek (1977) and Cox, et al (1985) specifications are rejected resoundingly
for all subsamples.

2 Specification test by a normality transformation

Consider a time series {Xt : t = 1, 2, · · · } and define Ft−1 to be the σ-field generated by {Xτ : τ ≤ t− 1}
and all exogenous stochastic variables observable up to time t. Let Gt−1(Xt; θ) be the distribution
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function of Xt, conditional on Ft−1, where θ denotes the model parameter(s). We maintain an
assumption that Xt has a continuous conditional distribution function and is differentiable almost
everywhere.

For typical dynamic location-scale models, such as ARMA and GARCH, Gt−1(Xt; θ) is simpli-
fied to some distribution function, say for example normal or student-t, and only the conditional
mean and standard deviation are used to reflect the dependence structure. For such cases, the
model is more commonly expressed as Xt = ft(µ) + vt(σ)εt, where ft(µ) and vt(σ) are measur-
able with respect to Ft−1 and εt’s are random variables with mean 0, variance 1 and a common
distribution function with parameter η (or no additional parameter at all). Thus, θ = (µ, σ, η).
This dynamic location-scale setup clearly encompasses typical time-series regression models with
exogenous variables.

Our specification also includes the data series being sampled discretely from a diffusion model.
For some diffusion model, such as the Ornstein-Uhlenbeck process that is commonly used to model
interest rates, the discretely sampled data series is exactly governed by a dynamic location-scale
model. For the mean-reverting square-root process (Feller process), on the other hand, the discretely
sampled data series can no longer be described as a dynamic location-scale model. Nevertheless,
the conditional distribution exists, and in particular, Gt−1(Xt; θ) is a non-central chi-square with
the non-centrality parameter depending on Xt−1. For more complex diffusion models, one may
need to use a method such as the expansion idea of Ait-Sahalia (2002) to obtain an approximate
closed-form expression for Gt−1(Xt; θ).

Let kθ be the number of parameters in θ. Denote by θ̂T some
√

T -consistent estimator for the
true parameter value θ0. The standard normal distributional function is denoted by Φ(z). Define

ξt(θ) = Φ−1 [Gt−1 (Xt; θ)] . (1)

It is clear that ξt(θ0) forms an i.i.d. sequence of standard normal random variables, but ξt(θ) does
not in general. We further transform ξt(θ) with the intention of eventually utilizing the fact that
ξt(θ0)’s are i.i.d. standard normal random variables.5 Let

q
(p)
m,i(θ) =

m∑

j=1

ξp
(i−1)∗m+j(θ) for p = 1, 2 (2)

q
(3)
m,i(θ) =

1
m




m∑

j=1

ξ(i−1)∗m+j(θ)




2

(3)

q
(4)
m,i(θ) =

1
m2




m∑

j=1

ξ2
(i−1)∗m+j(θ)−m




2

. (4)

Use R
(p)
m (·) to denote the distribution function for q

(p)
m,i(θ0). It is clear that R

(1)
m (·) is a normal

distribution function with mean 0 and variance m. It is also clear that R
(2)
m (·) is the chi-square

5Transforming the observed variable into a standard normal random variable is not a theoretical necessity. Without
this normality transformation, however, we cannot take advantage of the analytical convenience associated with
combining normal random variables on which the test construction heavily depends.
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distribution with m degrees of freedom. Similarly, R
(3)
m (·) is the chi-square distribution with 1

degree of freedom and R
(4)
m (x) = R

(2)
m [m (1 +

√
x)] − R

(2)
m [m (1−√x)]. Note that R

(p)
m (·) is not

model-specific.
For an integer m ≥ 1 and i = 1, 2, · · · , [T/m], we define

Y
(p)
m,i(θ) = R(p)

m

(
q
(p)
m,i(θ)

)
− 1

2
for p = 1, 2, 3, 4. (5)

Thus, Y
(p)
m,i(θ0) (for i = 1, 2, · · · ) forms an i.i.d. sequence of uniform (over

[−1
2 , 1

2

]
) random variables

for any m ≥ 1 and p ∈ {1, 2, 3, 4}. Our set of test statistics is based on the following constructed
variables:

Z
(p)
m,T (θ) =

1√
m[T/m]

[T/m]∑

i=1

Y
(p)
m,i(θ), for p = 1, 2, 3, 4. (6)

It is clear that
√

TZ
(p)
m,T (θ0) converges to a normal random variable with mean 0 by the Central

Limit Theorem and the asymptotic variance can also be easily computed. Unfortunately, we do not
know θ0 and need to evaluate Z

(p)
m,T (θ) at some parameter estimate θ̂T . Later, we devise the test

statistic corresponding to any given p, which relies on using some linear combinations of Z
(p)
m,T (θ̂T )

for different values of m to remove the sampling error associated with θ̂T .
We now make a usual assumption about a

√
T -consistent parameter estimator.

Assumption 1. The parameter estimator θ̂T for the time series {Xt : t = 1, 2, · · · } governed by
the conditional distribution function Gt−1(Xt; θ0) satisfies:

1.
√

T
(
θ̂T − θ0

)
= Op(1).

2.
∂Z

(p)
m,T (θ̂T )

∂θ′ converge in probability to a constant 1 × kθ vector for any finite m ≥ 1 and
p = 1, 2, 3, 4.

By Assumption 1, we can apply the Taylor expansion to Z
(p)
m,T (θ̂T ) to obtain

√
TZ

(p)
m,T (θ̂T ) =

√
TZ

(p)
m,T (θ0) +

∂Z
(p)
m,T (θ0)

∂θ′
√

T
(
θ̂T − θ0

)
+ op(1). (7)

The term
√

T
(
θ̂T − θ0

)
does not vanish because it converges to a proper random vector as T ap-

proaches infinity. This
√

T -consistent estimator carries with it a parameter estimation uncertainty.
In order to have a test that has a correct size, one must address this parameter estimation uncer-
tainty. The above Taylor expansion serves as the basis for us to construct a test statistic without
subjecting to the asymptotic distribution of the parameter estimate.

We now define a variance-covariance matrix of the limiting random variables, lim
T→∞

√
TZ

(p)
m,T (θ0)

for different m’s, which will be proved to be the case later in Theorem 1. Denote this matrix
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corresponding to {m = 1, 2, · · · , n} by A(p)
n×n and its (i, j)-element of this matrix is

a
(p)
ij =

√
ij

κ(i, j)
E




κ(i,j)/i∑

k=1

W
(p)
i,k

κ(i,j)/j∑

l=1

W
(p)
j,l


 (8)

where

W
(p)
m,l = R(p)

m




m∑

j=1

εp
(i−1)∗m+j


− 1

2
for p = 1, 2 (9)

W
(3)
m,l = R(3)

m


 1

m




m∑

j=1

ε(i−1)∗m+j




2
− 1

2
(10)

W
(4)
m,l = R(4)

m


 1

m2




m∑

j=1

ε2(i−1)∗m+j −m




2
− 1

2
(11)

κ(i, j) is the lowest common multiple of i and j, and {εt; t = 1, 2, · · · } is an i.i.d. sequence of
standard normal random variables. Note that A(p) does not depend on parameter value. The
diagonal elements of A(p) are always the same and can be computed analytically to yield a

(p)
ii = 1

12
for all i’s. The off-diagonal elements need to be assessed numerically and can, for example, be
computed by Monte Carlo simulation. Matrices A(p)

10×10 for p = 1, 2, 3 and 4 are presented in
Appendix B for which one million simulation paths were used. These calculations need not be
repeated because these matrices do not depend on a specific model.

The main result for the test statistic is stated in the following theorem.

Theorem 1. Assume that A(p)
n×n is invertible and maintain Assumption 1. Let A(p)1/2

n×n denote its
Cholesky decomposition (defined as a lower triangular matrix in this paper) and ‖·‖ be the

Euclidean norm. Let B(p)
n×kθ

(θ0) consist of the limiting vectors
∂Z

(p)
m,T (θ̂T )

∂θ′ for m = 1, 2, · · · , n,

and r denote the column rank of B(p)
n×kθ

(θ0). Then, for p ∈ {1, 2, 3, 4} and n > r, there exists

α
(p)
k×n that solves

α
(p)
k×nA

(p)−1/2
n×n B(p)

n×kθ
(θ0) = 0k×kθ

(12)

α
(p)
k×nα

(p)′
k×n = Ik×k, (13)

and

J
(p)
T (θ̂T ) = T

∥∥∥∥∥∥∥∥
α

(p)
k×nA

(p)−1/2
n×n




Z
(p)
1,T (θ̂T )

...
Z

(p)
n,T (θ̂T )




∥∥∥∥∥∥∥∥

2

D−→ χ2 (k) . (14)

where k = n− r.
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Proof: see Appendix A

Although α(p) always exists, the solution is not unique. Non-uniqueness is due to rotations.
A given solution can always be rotated by pre-multiplying α(p) with a unitary matrix. This non-
uniqueness is inconsequential because the test statistic J

(p)
T (θ̂T ) is invariant to the operation of

pre-multiplying by a unitary matrix. In other words, all solutions produce the same value for the
test statistic. To solve the system defined by equations (12) and (13), one can use the standard
computer routine to find the orthonormal basis α(p) for the null space defined by equation (12); for
example, Matlab offers a procedure “Null” for this task.

Matrix B(p)
n×kθ

(θ0) can be computed analytically in some cases. If, for example, the assumed
model is a constant mean µ and variance σ2 with a normal distribution, then one can show that

for p = 1, lim
T→∞

∂Z
(1)
m,T (µ0,σ0)

∂µ = − 1
2σ0

√
π

and lim
T→∞

∂Z
(1)
m,T (µ0,σ0)

∂σ = 0. Similarly for p = 2, we have

lim
T→∞

∂Z
(2)
m,T (µ0,σ0)

∂µ = 0 and lim
T→∞

∂Z
(2)
m,T (µ0,σ0)

∂σ = − 2√
mσ0

∫∞
0 z [h (z; m)]2 dz where h (·; m) is the chi-

square density function with m degrees of freedom. Unlike A(p), B(p)
n×kθ

(θ0) is model-specific and
is a function of the parameter. Since we do not know the true value, we need to use θ̂T instead.
In other words, we use B(p)

n×kθ

(
θ̂T

)
in place of B(p)

n×kθ
(θ0). In general, the analytical expression

for B(p)
n×kθ

(θ0) may be too complex to derive, but can always be approximated by generating a
simulated sample under the assumed model.

Before proceeding with finding the null space’s orthonormal basis, we need to recognize a
problem posed by the sampling error of B(p)

n×kθ

(
θ̂T

)
. If a particular column of B(p)

n×kθ

(
θ̂T

)
is

theoretically linearly dependent on others, it might not be so numerically simply due to sampling
errors. In other words, we may have a theoretical rank that is less than kθ, but numerically it
appears to have a rank equal to kθ. When the “genuine” rank is less than the rank in appearance,
the null space will have a dimension less than its true dimension. Failing to find the “genuine”
rank does not affect the size of test but may reduce its power. This is easily understood by an
example. Consider the case that n = 4, kθ = 3 and the true column rank equals 2, i.e., there
is one linearly dependent column in B(p)

4×3 (θ0). Due to sampling errors, its rank appears to be 3
numerically, and thus the resulting null space has the dimension equal to 1. The orthonormal basis
α(p) thus has only one row, but it could have two rows in the absence of sampling errors. The
degrees of freedom of the test statistic rightly reflects the number of rows in α(p). The sampling
error has, however, unduly restricted the test statistic to be constructed in the one-dimensional
subspace of the “genuine” two-dimensional null space. As a result, the power of the test may be
adversely affected.

To address this issue, it is preferable to set a reasonable tolerance level so as to uncover the
“genuine” rank by factoring in the approximate linear dependency. A reasonable tolerance level
must take into account the sampling error for θ̂T . Consider, for example, a parameter with a
small sampling error. A small deviation from linear dependency may actually indicate a true linear
independence. In order to set a uniform tolerance level, we consider a system that is equivalent to
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equations (12) and (13):

α
(p)
k×nA

(p)−1/2
n×n B(p)

n×kθ

(
θ̂T

)
V1/2

kθ×kθ

(
θ̂T

)
= 0k×kθ

(15)

α
(p)
k×nα

(p)′
k×n = Ik×k, (16)

where Vkθ×kθ

(
θ̂T

)
is the asymptotic variance-covariance matrix for

√
T

(
θ̂T − θ0

)
under the as-

sumed model and the superscript 1/2 denotes its Cholesky decomposition (defined as a lower tri-
angular matrix). The above system is motivated by the fact that the asymptotic variance-covariance
matrix for

√
TV−1/2

kθ×kθ

(
θ̂T

)(
θ̂T − θ0

)
is an identity matrix. Note that A(p)−1/2

n×n B(p)
n×kθ

(
θ̂T

)
V1/2

kθ×kθ

(
θ̂T

)

is basically the multiplying matrix used to determine how much sampling errors of√
TV−1/2

kθ×kθ

(
θ̂T

)(
θ̂T − θ0

)
gets transmitted to the test statistic. Setting a tolerance level for

A(p)−1/2
n×n B(p)

n×kθ

(
θ̂T

)
V1/2

kθ×kθ

(
θ̂T

)
amounts to applying a uniform maximum allowance level for

the sampling errors to impact the test statistic.
Since we do not know whether the assumed model is the one that generates the data set, we

need to compute B(p)
n×kθ

(
θ̂T

)
and Vkθ×kθ

(
θ̂T

)
directly by theory or approximate them numerically

using a simulated sample under the assumed model and the estimated parameter value θ̂T . The
results reported in this paper are all based on using the simulated data to compute these two
matrices. The size of the simulated sample is set equal to the size of the original data sample to
be tested. Alternatively, one can avoid simulation by sticking to the original data set. Using the
original data set to compute these two matrices will not affect the size of the test, but it can affect
the power when the true model deviates from the assumed model.

We perform the singular-value decomposition on B(p)
n×kθ

(
θ̂T

)
V1/2

kθ×kθ

(
θ̂T

)
to determine the

“genuine” rank of B(p)
n×kθ

(
θ̂T

)
. We set to zero all singular values that are smaller than 0.01 and

then reconstitute the matrix. The reconstituted matrix, denoted by P(p)
n×kθ

, is approximately equal

to B(p)
n×kθ

(
θ̂T

)
V1/2

kθ×kθ

(
θ̂T

)
, and presumably carries with it the true rank of B(p)

n×kθ
(θ0). We then

proceed to find the orthonormal basis α(p) for the null space defined by equations

α
(p)
k×nA

(p)−1/2
n×n P(p)

n×kθ
= 0k×kθ

(17)

α
(p)
k×nα

(p)′
k×n = Ik×k. (18)

For the results presented later, we have chosen to fix the degrees of freedom to a particular value
of k as opposed to setting n. This can be easily accomplished using the following procedure. First
we tentatively set n = kθ + k, and then check the dimension of the null space. If it equals k, then
stop. Otherwise, we reduce n by 1 and repeat the same check. It is not difficult to see that this
procedure guarantees the dimension of the final null space equal to k.
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3 Power analysis

The four statistics (p = 1, 2, 3 and 4) test different dimensions of the model specification. For p = 1
and 2, we examine the transformed residuals (i.i.d. standard normally distributed residuals under
the assumed model) to see whether their mean and variance are correctly specified. The test statistic
for p = 3 checks to see whether the transformed residuals are autocorrelated. In the case of p = 4,
we test whether the squared transformed residuals are autocorrelated. In an intuitive way, the four
test statistics offer more than just a formal statistical statement of rejection/no rejection. They
actually reveal the nature of model misspecification. For example, when a data set generated by a
symmetric fat-tailed distribution is mistakenly modeled as a normal distribution, the transformed
residual is effectively “stretched” so that its variance becomes larger than the predicted value under
the assumed model. Similarly, if a data set generated by a symmetric distribution is erroneously
modeled as an asymmetric distribution, the transformed residual will have a mean distorted away
from the value predicted by the assumed model.

In this section, we conduct a power analysis using two popular classes of models: AR-GARCH
and diffusion models. Two specific null hypotheses are tested with various alternative models used
to generate the data sets. In all cases, we set the degrees of freedom of the test statistic to 2 and
tabulate the rejection rate using 500 simulations.

3.1 AR-GARCH models

Consider the following model:

Xt = µ + γXt−1 + σtεt (19)
σ2

t = β0 + β1σ
2
t−1 + β2σ

2
t−1ε

2
t−1 (20)

where εt’s are i.i.d. mean 0 and variance 1 continuous random variables with a t-distribution
function of η degrees of freedom. For the power analysis, we test special cases of this model
without assuming the knowledge that the above model is used to generate the data set. A model to
be tested has the relevant parameter θ that is a subset of (µ, γ, β0, β1, β2, η). In order to compute
the test statistic, we only need to estimate the restricted model. Specifically, we use the maximum
likelihood estimator θ̂T for the restricted model.

Case 1: The assumed model: constant mean and variance with normality, i.e., γ = 0,
β1 = 0, β2 = 0 and η = ∞.

Under the assumed model, we have θ = {µ, σ} where σ =
√

β0. We can use the sample mean and
standard deviation of {X1, X2, · · · , XT }. We consider all four test statistics: J

(p)
T (θ̂T ), p = 1, 2, 3, 4

and study the size and power for each of them.
We set the stationary mean and variance to 0 and 1, respectively, in generating the data sets.

For the power analysis we alter the value for γ, β2 and η individually. When γ 6= 0, it is the
constant mean assumption being violated. Similarly, 1/η 6= 0 implies a violation of normality. In
the power analysis with respect to γ, we control for both the level and volatility of the process.
Specifically, we keep µ/(1 − γ) and σ2/(1 − γ2) constant where the two formulas are well known

10



results for the AR(1) model. For the power analysis of stochastic volatility, i.e., varying β2, we set
out to maintain the same overall level of volatility when generating the ARCH(1) model. If the
value of β0 is fixed, an increase in β2 will not only generate stochastic volatility but also cause the
overall level of volatility to rise. To control for the volatility level, we set σ̄2 = 1 and maintain
β0 = σ̄2 (1− β1 − β2) when the value β2 is varied.6 In generating data, we also set σ2

1 = σ̄2,
meaning that the initial data point has the average volatility.

Tables 1.a-1.c present the rejection rates (5% test, 2 degrees of freedom) for various parameter
values and three sample sizes (200, 500 and 1000). The size in all cases are fairly accurate. When
the data generating model is the AR(1) process, the assumed model (normality with constant mean
and variance) is rejected mainly for p = 3 (Table 1.a). This result is hardly surprising because the
transformed residuals should be autocorrelated. If the data is generated by a t-distribution, we
have strong rejection for p = 2 (Table 1.b). As discussed in the beginning of Section 3, we expect
rejection under p = 2 for this case. This is true because the transformed residual is effectively
“stretched” so that its variance becomes larger than the predicted value under the assumed model.
Finally in Table 1.c, we see rejection under p = 2 and 4 when the data set is generated using
the ARCH(1) model. Having rejection under p = 4 is completely expected because the squared
transformed residuals are autocorrelated. As to rejection under p = 2, the reason is similar to the
case of t-distributed data. The ARCH(1) model with conditional normality makes the marginal
distribution exhibit a fat-tailed feature, and as a result, produces the “stretching” effect.

3.2 Diffusion models

We limit our power study to the class of mean-reverting constant-elasticity-of-variance diffusion
models:

dXt = κ(µ−Xt)dt + σXδ
t dWt (21)

where Wt is a Wiener process. We simulate the data set by approximating the above diffusion model
with 20 subintervals within one recording data interval. In other words, we record once every 20
simulated data points to mimic a discretely sampled data set under the diffusion assumption. The
Milstein scheme is used to generate the data set.

The assumed model is the Ornstein and Uhlenbeck process, a special case of equation (21) by
setting δ = 0. The parameters of this model can be estimated by maximum likelihood or other

√
T -

consistent estimation methods like GMM. The results presented below are based on the maximum
likelihood estimates.

Three special versions of the diffusion model in equation (21) are used to generate the data for
testing. The first model is the Ornstein-Uhlenbeck process, i.e., δ = 0. Its use for modeling interest
rates was popularized by Vasicek (1977) in which this process plays a pivotal role in deriving the
Vasicek bond pricing model. For ease of discussion, we refer to it as the Vasicek model. Next, we
use the mean-reversion square-root diffusion (Feller process), i.e., δ = 1/2. This process was used
by Cox, Ingersoll and Ross (1985) to obtain the well-known CIR bond pricing model. Again for
ease of discussion, we refer to it as the CIR model. Finally, the version established in Chan, et al
(1992) is referred to as the CKLS model, which reports an estimate of δ equal to 1.4999.

6This is due to the fact that the stationary volatility equals σ̄2 = β0/ (1− β1 − β2)
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Case 2: The assumed model: the Vasicek model, i.e., δ = 0.
The data sets used in the power analysis are generated by three different models. First, we gener-

ate the Vasicek model using the following set of parameter values: (κ, µ, σ2) = (0.85837, 0.089102,
0.002185), which was used in Pritsker (1998) and was in turn taken from Ait-Sahalia (1996b).
The second model is the CIR model with the following set of parameter values: (κ, µ, σ2) =
(0.89218, 0.090495, 0.032742). Again they were used in Pritsker (1998) and Ait-Sahalia (1996b).
These two sets of parameter values are based on the unit of time being one year. For the daily
frequency, we thus divide both κ and σ2 by 252. The final model is the CKLS specification with the
other parameter values reported in Chan, et al (1992): (κ, µ, σ2) = (0.5921, 0.0689, 1.6704). These
parameter values correspond to one month as the basic unit of time. Thus, we divide both κ and
σ2 by 21.

Table 2 indicates that the size of test (for p = 1, 2, 3 and 4) is correct for the sample size as
small as 500, a sample size that is roughly equal to daily observations over two years. This result
stands in sharp contrast to that of the Ait-Sahalia test as discussed in Pristker (1998), where he
argues that the Ait-Sahalia test needs to have an exceedingly large sample of interest rate data in
order to have a right size.

The power of rejecting the Vasicek model mainly resides with the test under p = 4, which checks
to see whether the squared transformed residuals are autocorrelated. Assuming the Vasicek model
while the data is generated by the CIR model induces autocorrelation in the conditional variance
because these two models only differ in how the diffusion term is specified. A similar argument
applies to the data set generated by the CKLS model.7 In order to have a moderate power (50%) of
rejecting the Vasicek model when the data is generated by the CIR model, one needs to have about
10 years worth of daily interest rate data. It is, however, much easier to reject the Vasicek model
(in excess of 90%) if the data is generated by the CKLS model, a result that is hardly surprising.

4 Application to real data

Two real data series are now considered. The first series is the daily S&P500 index returns (total
return index from April 16, 1993 to April 16, 2003, continuously compounded) extracted from
Datastream whereas the second series is the 7-day Eurodollar deposit spot rates on a daily frequency
from June 1, 1973 to February 25, 1995, a data set used in Ait-Sahalia (1996a). We present the
parameter estimates under the assumed models as well as the testing results using the four test
statistics for each of the assumed models. Similar to the power analysis, we set the degrees of
freedom of the test statistic to 2.

7When the data set is generated by the CKLS model, the power of test (p = 4) does not necessarily increase with
the sample size. For example, it drops from 76.8% to 41.4% when the sample size is increased from 500 to 1, 000.
This result is due to sometimes obtaining the AR(1) coefficient estimate greater than 1 when the sample size equals

500. It leads to an explosive B
(p)
n×kθ

�
θ̂T

�
and thus a rejection.
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4.1 S&P500 index returns

The equity market index return is commonly modeled by the GARCH model in the empirical finance
literature. For the S&P500 index return series, we consider two cases under the GARCH model.
The results for the whole sample (2520 data points) and two subsamples (938 and 1582 data points)
are provided. The whole sample is divided on December 31, 1996, because inspection of the return
time series plot reveals a clear structural break. The maximum likelihood parameter estimates are
used to compute the test statistics. The parameter estimates obtained for this model, reported in
the bottom panel of Table 3.a, are similar to the typical results reported in the literature.

The first model applied to the S&P500 index return series is the linear GARCH(1,1) model
with a conditional normal distribution. The results are presented in Table 3.a. The model is not
rejected (at the 5% significance level) using the whole data sample but rejected for either subsample.
Rejection takes place either with p = 2 or 4, meaning that the transformed residual has a variance
different from the one predicted by the assumed model or the squared transformed residuals are
autocorrelated. Given the extensive evidence supporting conditional leptokurtosis in the empirical
finance literature, rejection (p = 2) for the second subsample is expected. For the first subsample,
rejection (p = 4) suggests that the GARCH(1,1) variance dynamic is likely misspecified. What
is surprising is our failure to reject the GARCH(1,1)-normality model using the whole sample.
Perhaps, the structural break has mixed together two different kinds of misspecification present in
the two subsamples.

The second model considered for the S&P500 index return series is the GARCH(1,1) model
with a conditional t-distribution and the results are presented in Table 3.b. One can view this
model as a natural progression from the GARCH model with conditional normality. We can still
reject the model at the 5% level for the second subsample, and rejection continues to occur with
p = 2, indicating the transformed residual still has a variance different from that predicted by the
assumed model. Since the assumed model has allowed for leptokurtosis, rejection may indicate a
problem with using t-distribution to model the data in the second subsample.

4.2 Eurodollar deposit rates

Arguably the most popular models used for describing interest rates are two specific diffusion
models that we considered in Section 3.2: the Vasicek and CIR models. Their popularity has much
to do with the fact that both models yield a bond pricing model that is exponential-affine and
analytically convenient. We now study their performance in describing the Eurodollar deposit rate
series. We run the four tests for the whole series with 5, 505 data points as well as five subsamples
of 1, 000 data points for both models.

The results for the Vasicek model are presented in Table 4.a. Since the Vasicek model for the
discretely sampled data set is effectively an AR(1) model, we simply use the lagged regression to
obtain the simplest

√
T -consistent estimates. Each of the parameter values can be converted to

the parameter values under the Vasicek model. Note that κ and σ are stated in terms of the unit
of time equal to one year. The test results (p = 2 and 4) clearly indicate that the Vasicek model
performs poorly. These resounding rejections suggest that the transformed residual does not have
the right variance and the squared transformed residuals are autocorrelated. The fact that rejection
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consistently falls on p = 2 and 4 for the whole sample as well as for the five subsamples indicates
a persistent pattern of misspecification.

Table 4.b present the results of testing the CIR model. Contrary to a common belief, this model
performs no better than the Vasicek model. It has been resoundingly rejected for all p = 2 and 4
except for the most recent 1, 000 data points. In addition, the mean of the transformed residual
also differs from the model prediction. This result is interesting given that the mean-reverting
specification presumably allows for the mean of the interest rate series to be freely located and
should thus exhibit no level bias. The conditional density function under the assumed model has,
however, distorted the mean of the transformed residual. The result clearly points to the wrong
skewed distribution (non-central chi-square) implied by the CIR model.

A Proof of Theorem 1

First, we argue that there exists a solution α
(p)
k×n. Because the column rank of A(p)−1/2

n×n B(p)
n×kθ

(θ0)
is r, the null space has a dimension equal to k = n− r. Therefore, there will always be a solution
α

(p)
k×n to equations (12) and (13).

Next, we use Assumption 1 and the Taylor expansion in equation (7) to compute

√
Tα

(p)
k×nA

(p)−1/2
n×n




Z
(p)
1,T (θ̂T )

...
Z

(p)
n,T (θ̂T )




= α
(p)
k×nA

(p)−1/2
n×n




√
TZ

(p)
1,T (θ0)
...√

TZ
(p)
n,T (θ0)


 + α

(p)
k×nA

(p)−1/2
n×n




∂Z
(p)
1,T (θ0)

∂θ′
...

∂Z
(p)
n,T (θ0)

∂θ′



√

T
(
θ̂T − θ0

)
+ op(1)

= α
(p)
k×nA

(p)−1/2
n×n




√
TZ

(p)
1,T (θ0)
...√

TZ
(p)
n,T (θ0)


 + α

(p)
k×nA

(p)−1/2
n×n B(p)

n×kθ
(θ0)

√
T

(
θ̂T − θ0

)
+ op(1)

= α
(p)
k×nA

(p)−1/2
n×n




√
TZ

(p)
1,T (θ0)
...√

TZ
(p)
n,T (θ0)


 + op(1).

Let n∗ be the lowest common multiple of {1, 2 · · · , n}. For any 1 ≤ m ≤ n,
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√
TZ

(p)
m,T (θ0) =

√
T/m

[T/m]

[T/m]∑

i=1

Y
(p)
m,i(θ0)

=
1√
T/m

[T/n∗]∑

l=1

n∗/m∑

j=1

Y
(p)

m,(l−1)n∗
m

+j
(θ0) + op(1)

=
1√

T/n∗

[T/n∗]∑

l=1




√
m

n∗

n∗/m∑

j=1

Y
(p)

m,(l−1)n∗
m

+j
(θ0)


 + op(1)

=
1√

T/n∗

[T/n∗]∑

l=1

Hl(p, m) + op(1)

where

Hl(p,m) =
√

m

n∗

n∗/m∑

j=1

Y
(p)

m,(l−1)n∗
m

+j
(θ0).

Thus,

α
(p)
k×nA

(p)−1/2
n×n




√
TZ

(p)
1,T (θ0)
...√

TZ
(p)
n,T (θ0)


 =

1√
T/n∗

[T/n∗]∑

l=1


α

(p)
k×nA

(p)−1/2
n×n




Hl(p, 1)
...

Hl(p, n)





 + op(1)

=
1√

T/n∗

[T/n∗]∑

l=1

Ql(p) + op(1)

where

Ql(p) = α
(p)
k×nA

(p)−1/2
n×n




Hl(p, 1)
...

Hl(p, n)


 .

Note that Ql(p)’s form an i.i.d. sequence of k-dimensional random vectors with mean 0k×1 and
variance covariance matrix Ik×k. This is true because (1) Y

(p)
m,j(θ0) has a zero mean, and (2)

E
(∑n∗/i

k=1 Y
(p)
i,k (θ0)

∑n∗/j
l=1 Y

(p)
j,l (θ0)

)
= a

(p)
ij with a

(p)
ij being defined in equation (8). The second fact

can be established by decomposing the n∗-element block into n∗/κ(i, j) independent blocks with
κ(i, j) elements each so that

E




n∗/i∑

k=1

Y
(p)
i,k (θ0)

n∗/j∑

l=1

Y
(p)
j,l (θ0)


 = E




n∗/i∑

k=1

W
(p)
i,k

n∗/j∑

l=1

W
(p)
j,l




=
√

ij

κ(i, j)
E




κ(i,j)/i∑

k=1

W
(p)
i,k

κ(i,j)/j∑

l=1

W
(p)
j,l


 .
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Applying the Central Limit Theorem yields

α
(p)
k×nA

(p)−1/2
n×n




√
TZ

(p)
1,T (θ0)
...√

TZ
(p)
n,T (θ0)




D−→ N (0, Ik×k) .

Thus,
J

(p)
T (θ̂T ) D−→ χ2 (k) .

The proof is thus complete.

B Expression for matrix A(p)

The following 10× 10 matrices are computed using Monte Carlo simulation with one million repe-
titions.

A(1)
10×10 =




0.0833 0.0813 0.0808 0.0806 0.0803 0.0801 0.0801 0.0799 0.0800 0.0800
0.0813 0.0834 0.0814 0.0813 0.0808 0.0808 0.0806 0.0804 0.0802 0.0803
0.0808 0.0814 0.0833 0.0812 0.0810 0.0814 0.0808 0.0806 0.0807 0.0806
0.0806 0.0813 0.0812 0.0834 0.0814 0.0815 0.0810 0.0812 0.0806 0.0808
0.0803 0.0808 0.0810 0.0814 0.0833 0.0814 0.0816 0.0810 0.0808 0.0814
0.0801 0.0808 0.0814 0.0815 0.0814 0.0834 0.0814 0.0813 0.0813 0.0812
0.0801 0.0806 0.0808 0.0810 0.0816 0.0814 0.0834 0.0816 0.0813 0.0812
0.0799 0.0804 0.0806 0.0812 0.0810 0.0813 0.0816 0.0834 0.0816 0.0815
0.0800 0.0802 0.0807 0.0806 0.0808 0.0813 0.0813 0.0816 0.0833 0.0813
0.0800 0.0803 0.0806 0.0808 0.0814 0.0812 0.0812 0.0815 0.0813 0.0834




A(2)
10×10 =




0.0833 0.0766 0.0730 0.0707 0.0692 0.0683 0.0676 0.0670 0.0666 0.0664
0.0766 0.0833 0.0792 0.0785 0.0767 0.0762 0.0751 0.0749 0.0744 0.0740
0.0730 0.0792 0.0834 0.0799 0.0793 0.0794 0.0782 0.0778 0.0776 0.0768
0.0707 0.0785 0.0799 0.0832 0.0802 0.0802 0.0796 0.0800 0.0788 0.0786
0.0692 0.0767 0.0793 0.0802 0.0833 0.0803 0.0803 0.0800 0.0797 0.0801
0.0683 0.0762 0.0794 0.0802 0.0803 0.0834 0.0807 0.0805 0.0806 0.0799
0.0676 0.0751 0.0782 0.0796 0.0803 0.0807 0.0833 0.0807 0.0806 0.0806
0.0670 0.0749 0.0778 0.0800 0.0800 0.0805 0.0807 0.0834 0.0806 0.0809
0.0666 0.0744 0.0776 0.0788 0.0797 0.0806 0.0806 0.0806 0.0832 0.0808
0.0664 0.0740 0.0768 0.0786 0.0801 0.0799 0.0806 0.0809 0.0808 0.0833



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A(3)
10×10 =




0.0833 0.0434 0.0331 0.0278 0.0243 0.0218 0.0202 0.0188 0.0175 0.0166
0.0434 0.0833 0.0436 0.0434 0.0330 0.0330 0.0277 0.0277 0.0244 0.0244
0.0331 0.0436 0.0833 0.0437 0.0393 0.0434 0.0333 0.0313 0.0330 0.0280
0.0278 0.0434 0.0437 0.0833 0.0437 0.0433 0.0380 0.0435 0.0337 0.0331
0.0243 0.0330 0.0393 0.0437 0.0833 0.0438 0.0414 0.0389 0.0373 0.0435
0.0218 0.0330 0.0434 0.0433 0.0438 0.0834 0.0440 0.0437 0.0435 0.0395
0.0202 0.0277 0.0333 0.0380 0.0414 0.0440 0.0833 0.0437 0.0422 0.0407
0.0188 0.0277 0.0313 0.0435 0.0389 0.0437 0.0437 0.0832 0.0441 0.0437
0.0175 0.0244 0.0330 0.0337 0.0373 0.0435 0.0422 0.0441 0.0834 0.0439
0.0166 0.0244 0.0280 0.0331 0.0435 0.0395 0.0407 0.0437 0.0439 0.0834




A(4)
10×10 =




0.0841 0.0485 0.0311 0.0229 0.0186 0.0160 0.0141 0.0127 0.0120 0.0109
0.0485 0.0833 0.0538 0.0461 0.0351 0.0316 0.0267 0.0249 0.0222 0.0210
0.0311 0.0538 0.0831 0.0536 0.0462 0.0455 0.0359 0.0326 0.0321 0.0277
0.0229 0.0461 0.0536 0.0832 0.0528 0.0499 0.0427 0.0449 0.0359 0.0340
0.0186 0.0351 0.0462 0.0528 0.0839 0.0521 0.0481 0.0443 0.0412 0.0445
0.0160 0.0316 0.0455 0.0499 0.0521 0.0835 0.0508 0.0495 0.0481 0.0431
0.0141 0.0267 0.0359 0.0427 0.0481 0.0508 0.0826 0.0500 0.0479 0.0452
0.0127 0.0249 0.0326 0.0449 0.0443 0.0495 0.0500 0.0827 0.0500 0.0486
0.0120 0.0222 0.0321 0.0359 0.0412 0.0481 0.0479 0.0500 0.0832 0.0490
0.0109 0.0210 0.0277 0.0340 0.0445 0.0431 0.0452 0.0486 0.0490 0.0823



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Table 1.a The assumed model is constant mean and variance with normality. The data 
set is generated using AR(1) with γ  as the AR coefficient. The rejection rates 
(500 simulations, 5% test, 2 degrees of freedom) for four test statistics (p = 
1,2,3 and 4) and three sample sizes are reported in this table. 

 
Rejection rate 

p 1 2 3 4 
γ  Sample size = 200 

-0.5 0.022 0.168 0.864 0.042 
-0.2 0.054 0.044 0.250 0.038 
-0.1 0.046 0.052 0.106 0.056 

0 0.050 0.056 0.038 0.044 
0.1 0.072 0.052 0.078 0.048 
0.2 0.038 0.066 0.182 0.048 
0.5 0.044 0.132 0.680 0.072 
γ  Sample size = 500 

-0.5 0.012 0.324 0.978 0.144 
-0.2 0.044 0.050 0.520 0.048 
-0.1 0.064 0.046 0.168 0.054 

0 0.054 0.062 0.050 0.062 
0.1 0.072 0.056 0.138 0.048 
0.2 0.056 0.080 0.378 0.036 
0.5 0.030 0.308 0.906 0.120 
γ  Sample size = 1000 

-0.5 0.012 0.610 0.984 0.284 
-0.2 0.050 0.054 0.762 0.048 
-0.1 0.060 0.054 0.290 0.054 

0 0.058 0.064 0.040 0.038 
0.1 0.048 0.052 0.236 0.044 
0.2 0.080 0.074 0.676 0.046 
0.5 0.024 0.548 0.964 0.248 
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Table 1.b The assumed model is constant mean and variance with normality. The data 
set is generated using t-distribution with η  as the degrees of freedom. The 
rejection rates (500 simulations, 5% test, 2 degrees of freedom) for four test 
statistics (p = 1,2,3 and 4) and three sample sizes are reported in this table. 

 
Rejection rate 

p 1 2 3 4 
η  Sample size = 200 
∞  0.068 0.056 0.044 0.050 
20 0.060 0.090 0.052 0.032 
10 0.066 0.088 0.048 0.066 
7 0.094 0.140 0.062 0.064 
5 0.070 0.308 0.050 0.150 
4 0.076 0.438 0.094 0.228 
η  Sample size = 500 
∞  0.052 0.050 0.046 0.052 
20 0.054 0.088 0.060 0.060 
10 0.062 0.166 0.064 0.096 
7 0.088 0.306 0.076 0.146 
5 0.070 0.524 0.150 0.256 
4 0.070 0.708 0.192 0.450 
η  Sample size = 1000 
∞  0.062 0.044 0.038 0.042 
20 0.070 0.110 0.066 0.060 
10 0.058 0.212 0.070 0.114 
7 0.064 0.490 0.146 0.204 
5 0.054 0.750 0.264 0.404 
4 0.054 0.874 0.402 0.574 
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Table 1.c The assumed model is constant mean and variance with normality. The data 
set is generated using ARCH(1) with 2β  as the ARCH coefficient. The 
rejection rates (500 simulations, 5% test, 2 degrees of freedom) for four test 
statistics (p = 1,2,3 and 4) and three sample sizes are reported in this table. 

 
Rejection rate 

p 1 2 3 4 
2β  Sample size = 200 

0 0.068 0.070 0.038 0.060 
0.1 0.096 0.070 0.052 0.034 
0.2 0.046 0.118 0.056 0.062 
0.3 0.072 0.134 0.098 0.104 
0.5 0.070 0.162 0.070 0.144 
0.7 0.094 0.190 0.094 0.224 

2β  Sample size = 500 
0 0.044 0.052 0.046 0.050 

0.1 0.058 0.088 0.062 0.074 
0.2 0.066 0.156 0.076 0.108 
0.3 0.082 0.214 0.112 0.184 
0.5 0.064 0.318 0.138 0.306 
0.7 0.106 0.374 0.182 0.496 

2β  Sample size = 1000 
0 0.040 0.052 0.040 0.046 

0.1 0.064 0.104 0.070 0.078 
0.2 0.060 0.260 0.130 0.160 
0.3 0.062 0.442 0.190 0.334 
0.5 0.068 0.528 0.252 0.532 
0.7 0.064 0.720 0.346 0.782 
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Table 2 The assumed model is that of Vasicek (1977). The data set are generated using 
the Vasicek, CIR and CKLS specifications. The rejection rates (500 
simulations, 5% test, 2 degrees of freedom) for four test statistics (p = 1,2,3 
and 4) and four sample sizes are reported in this table. 

 
Rejection rate 

p 1 2 3 4 
Generating 

model 
Sample size = 500 

Vacicek 0.068 0.064 0.056 0.054 
CIR 0.068 0.068 0.052 0.086 

CKLS 0.084 0.080 0.028 0.768 
 Sample size = 1000 

Vacicek 0.054 0.058 0.058 0.056 
CIR 0.058 0.056 0.050 0.106 

CKLS 0.070 0.372 0.030 0.414 
 Sample size = 2500 

Vacicek 0.048 0.042 0.046 0.052 
CIR 0.044 0.080 0.050 0.510 

CKLS 0.046 0.846 0.022 0.938 
 Sample size = 5500 

Vacicek 0.062 0.054 0.060 0.040 
CIR 0.072 0.088 0.054 0.910 

CKLS 0.054 0.844 0.020 1.000 
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Table 3.a The assumed model is constant-mean GARCH(1,1) with conditional 
normality. The four test statistics (p = 1,2,3 and 4) along with the 
corresponding tail probabilities for chi-square of 2 degrees of freedom are 
given for the entire data sample (2520 S&P500 daily index returns) and two 
subsamples (938 and 1582). The bottom panel provides the parameter 
estimates with the standard errors. 

 
Testing results 

p 1 2 3 4 
Whole sample 

Test stat 0.8966 3.7121 1.7936 4.4100 
Tail prob 0.6387 0.1563 0.4079 0.1102 

First subsample (before December 31, 1996) 
Test stat 0.6285 4.3924 0.5948 7.6292 
Tail prob 0.7303 0.1112 0.7427 0.0220 

Second subsample (after December 31, 1996) 
Test stat 0.7196 8.3280 4.9996 1.2520 
Tail prob 0.6978 0.0155 0.0821 0.5347 

Estimation results 
 410×µ  6

0 10×β  1β  2β  

Whole sample 
Estimate 6.74237 0.62628 0.91879 0.08044 
Std err 1.64537 0.16021 0.00684 0.00679 

First subsample (before December 31, 1996) 
Estimate 7.26237 1.20327 0.91697 0.05122 
Std err 1.92170 0.42218 0.01940 0.01143 

Second subsample (after December 31, 1996) 
Estimate 5.06697 9.47883 0.84799 0.10085 
Std err 3.18199 2.14413 0.02140 0.01379 
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Table 3.b The assumed model is constant-mean GARCH(1,1) with conditional t 
distribution with η  degrees of freedom. The four test statistics (p = 1,2,3 and 
4) along with the corresponding tail probabilities for chi-square of 2 degrees 
of freedom are given for the entire data sample (2520 S&P500 daily index 
returns) and two subsamples (938 and 1582). The bottom panel provides the 
parameter estimates with the standard errors. 

 
Testing results 

p 1 2 3 4  
Whole sample 

Test stat 1.4703 1.6775 1.0675 3.0521  
Tail prob 0.4794 0.4322 0.5864 0.2174  

First subsample (before December 31, 1996) 
Test stat 1.3317 1.9642 0.7506 4.9519  
Tail prob 0.5138 0.3745 0.6871 0.0841  

Second subsample (after December 31, 1996) 
Test stat 0.5886 9.3469 3.8627 3.2162  
Tail prob 0.7450 0.0093 0.1450 0.2003  

Estimation results 
 410×µ  6

0 10×β  1β  2β  η  

Whole sample 
Estimate 7.25576 0.43187 0.93093 0.06907 7.20783 
Std err 1.54516 0.19303 0.00908 0.00957 0.93936 

First subsample (before December 31, 1996) 
Estimate 7.97966 1.37482 0.91306 0.05175 5.74627 
Std err 1.76610 0.79606 0.03360 0.01865 1.22183 

Second subsample (after December 31, 1996) 
Estimate 4.78140 6.78283 0.88077 0.08218 9.38635 
Std err 3.00429 2.46545 0.02629 0.01769 1.76006 
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Table 4.a The assumed model is that of Vasicek (1977), i.e., 0=δ . The four test 
statistics (p = 1,2,3 and 4) along with the corresponding tail probabilities for 
chi-square of 2 degrees of freedom are given for the entire data sample (5505 
daily observations of 7-day Eurodollar deposit rates) and five subsamples 
dividing the last 5,000 data points (with 5 being the most recent 1,000). The 
bottom panel provides the parameter estimates. 

 
Testing results 

p 1 2 3 4 
5505 

Test stat 11.2164 3648.892 1.7415 203.5810 
Tail prob 0.0037 0.0000 0.4186 0.0000 

1000 (5) 
Test stat 1.6580 9.8752 2.3462 30.2330 
Tail prob 0.4365 0.0072 0.3094 0.0000 

1000 (4) 
Test stat 0.3615 88.0039 10.5642 67.2995 
Tail prob 0.8346 0.0000 0.0051 0.0000 

1000 (3) 
Test stat 1.0054 17.8354 6.1298 44.7609 
Tail prob 0.6049 0.0001 0.0467 0.0000 

1000 (2) 
Test stat 2.1791 186.2623 3.0478 7.2676 
Tail prob 0.3364 0.0000 0.2179 0.0264 

1000 (1) 
Test stat 0.8758 201.8716 3.3437 26.1881 
Tail prob 0.6454 0.0000 0.1879 0.0000 

Estimation results 
 κ  µ  σ   
5505 1.60884 0.08308 0.06460  
1000 (5) 1.38018 0.04047 0.01596  
1000 (4) 2.82658 0.08123 0.02310  
1000 (3) 1.15538 0.08053 0.02709  
1000 (2) 5.73857 0.13570 0.11729  
1000 (1) 3.52208 0.07110 0.05287  
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Table 4.b The assumed model is that of CIR (1985), i.e., 2/1=δ . The four test 
statistics (p = 1,2,3 and 4) along with the corresponding tail probabilities for 
chi-square of 2 degrees of freedom are given for the entire data sample (5505 
daily observations of 7-day Eurodollar deposit rates) and five subsamples 
dividing the last 5,000 data points (with 5 being the most recent 1,000). The 
bottom panel provides the parameter estimates. 

 
Testing results 

p 1 2 3 4 
5505 

Test stat 12.3392 1708.326 4.3769 41.6322 
Tail prob 0.0021 0.0000 0.1121 0.0000 

1000 (5) 
Test stat 11.0817 2.9258 5.9018 3.1848 
Tail prob 0.0039 0.2316 0.0523 0.2034 

1000 (4) 
Test stat 40.8427 83.4566 2.7771 119.2926 
Tail prob 0.0000 0.0000 0.2494 0.0000 

1000 (3) 
Test stat 0.4294 32.0258 7.6149 10.0785 
Tail prob 0.8068 0.0000 0.0222 0.0065 

1000 (2) 
Test stat 14.1412 27.8218 3.3855 121.5066 
Tail prob 0.0008 0.0000 0.1840 0.0000 

1000 (1) 
Test stat 9.3204 144.7785 4.3413 180.1325 
Tail prob 0.0095 0.0000 0.1141 0.0000 

Estimation results 
 κ  µ  σ   
5505 1.61852 0.07543 0.19805  
1000 (5) 1.38018 0.04047 0.07831  
1000 (4) 2.65367 0.08125 0.07800  
1000 (3) 1.15599 0.08050 0.09032  
1000 (2) 6.06670 0.13640 0.32317  
1000 (1) 3.60625 0.07212 0.19717  

 


