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Abstract

In this paper we investigate the market pricing of derivative warrants. We couple the Black-
Scholes model with a nonlinear correction function to further capture contract features. The
nonlinear correction is based on the local linear kernel regression technique with time to maturity
of the warrant, moneyness of the warrant and volatility of the underlying stock as the regressors.
The derivative warrants written on the HSBC common stock traded in the Hong Kong Stock
Exchange are used as the data sample. Our semi-parametric approach is found to substantially
improve the model’s ability to describe the market pricing structure of derivative warrants. The
performance improvement due to the nonlinear correction is significant for both in-sample and
out-of-sample settings. In addition, we find consistency in the market pricing behavior across
warrants issued at different times and by different financial institutions. Specifically, we find no
evidence that the identity of warrant issuer can have an effect on the pricing of warrants.
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1 Introduction

Since their origination in 1980’s, derivative warrants have become a very popular way of repackaging
securities into units more accessible to small investors. Derivative warrants are long term options
issued by a company, typically an investment bank, that give the holder the right to purchase
(or sell) some firm’s common stock at a pre-determined price (the exercise price) on or before an
expiration date'. Recently, derivative warrants have been issued on other underlying assets such as
indices or baskets of listed equities. Derivative warrants differ from equity warrants (or sometimes
referred to as corporate warrants) in an important way. Equity warrants are issued by the listed
company as a part of the dividend program and/or some financing packages. When equity warrants
are exercised, new common shares will be released and thus result in a dilution effect. Derivative
warrants are, on the other hand, issued by a third party, and the total number of shares outstanding
will not be affected due to exercise of warrants. This paper focuses on the market pricing behavior
of derivative warrants.

Warrants offer investors increased gearing over holding the underlying securities in the case of
call warrants, and serve as a convenient means of hedging in the case of put warrants. Indeed,
derivative warrants are popular in some markets such as Germany, Switzerland and Hong Kong.
Derivative warrants can be more popular than standard exchange traded options when both types
of contracts are available on the same underlying asset. Such is indeed the case in Hong Kong
for several Hang Seng index component stocks. Despite their apparent success, little systematic
research has been devoted to the understanding of their empirical characteristics, especially in
terms of their market pricing.

To price derivative warrants, it is natural to employ the option pricing theory pioneered by
Black and Scholes (1973), because derivative warrants are effectively options. Like the ordinary
options, the properties of a warrant are in part inherited from those of the underlying assets
and in part depend on the features of the contract. The literature on equity warrants such as
Schwartz (1977), Noreen and Wolfson (1981), Ferri, et al. (1986), and Leonard and Solt (1990)
suggests that the Black-Scholes model performs as well as some more complicated pricing models
for warrant pricing.? The conclusion reached in this body of studies seems inconsistent with the
general empirical findings about the Black-Scholes model when it is applied to exchange-traded
standard options. It is well known, for example, that the Black-Scholes model underprices the
exchange traded options because the implied volatility is on average substantially higher than the
historical or realized volatility of the underlying asset. The Black-Scholes model is also known
to exhibit systematic pricing biases manifested in the phenomena such as smile/smirk and term
structure of implied volatilities. The conclusion about warrant pricing may in part be a result
of a genuine difference as to how warrants vis-a-vis standard options are priced in the market
place, or simply due to the inadequacy of the method employed in those studies in picking up the
Black-Scholes model’s systematic biases. To disentangle these two causes, it is essential to employ

'The overwhelming majority of derivative warrants are call warrants. Since 1996, however, put warrants began to
emerge.

2Exception to this conclusion is the study by Lauterbach and Schultz (1990). They present evidence that the
Black-Scholes model is outperformed by a model that assumes a constant elasticity of variance (CEV) diffusion
process for the underlying asset.



a suitable analytical tool that has the flexibility to account for the Black-Scholes model’s biases if
any.

In this paper, we devise a semi-parametric method for the pricing of derivative warrants. Our
method couples the parametric Black-Scholes model with a non-parametric nonlinear correction
function that depends on the maturity and exercise price of the warrant and the historical volatility
of the underlying asset. The nonlinear correction is based on the kernel regression technique, which
thus bears resemblance to the method of Ait-Sahalia (1996), Broadie, et al. (1996) and Ait-
Sahalia and Lo (1998). Our method differs from theirs in two important ways, however. First,
instead of applying kernel regression directly on option prices (or implied volatilities), we couple
it with the parametric Black-Scholes model. In a way, we rely on the kernel regression to pick up
the aspects of warrant pricing that the Black-Scholes model fails to capture as opposed to relying
totally on the non-parametric technique to perform the pricing task. Our formulation which focuses
on modeling the Black-Scholes model error is conceptually similar to that of Jacquier and Jarrow
(1999), although the techniques for making the adjustment are different. Second, we have employed
the local linear kernel regression method instead of the Nadaraya and Watson local constant kernel
regression method used in Ait-Sahalia (1996), Broadie, et al. (1996) and Ait-Sahalia and Lo (1998).
Our adoption of a local linear kernel regression is motivated by the fact that it has better asymptotic
and boundary properties (see Fan (1992)).

Most of the previous studies on warrants concentrate on equity warrants in U.S. and Japan.
In this paper, we use the data on the derivative warrants traded in Hong Kong. The issuance
and trading of derivative warrants are increasing steadily in Hong Kong. In fact, Hong Kong
has become the Asian leader in warrant trading and has the third largest exchange-listed warrant
market in the world?. To date systematic empirical studies on the pricing of derivative warrants are
limited. To our knowledge, there are only two studies actually deal with Hong Kong’s derivative
warrants. Wei (1997) relies on a lower pricing bound as a means to investigate the pricing behavior
of derivative warrants traded in Hong Kong. He concludes that derivative warrants are higher
than the model’s prediction due to a short-sale restriction. Chang, Chang, and Lim (1998) employ
an information-time option pricing model to study derivative warrants and show its performance
superior to the Black-Scholes model. In this paper, we apply the semi-parametric pricing method to
Hong Kong’s derivative warrants. We rely on the method’s flexibility in picking up data regularities
without being subject to the rigidity imposed by parametric models. Our findings are expected to
bring a better understanding of derivative warrant pricing in general and the Hong Kong market
in particular.

Derivative warrants written on Hong Kong Shanghai Banking Corporation over the period from
September, 1993 to December, 1997 are used in this study. We divide the data sample into two
groups: one as the in-sample data set and the other the out-of-sample data set. Our results reveal
that the Black-Scholes model when applied to derivative warrants also exhibits the same systematic
pricing biases similar to those observed on the exchange-traded standard options. Based on the
in-sample observations, we obtain a suitable local linear kernel regression function for correcting the
Black-Scholes price. Our results indicate that the local linear kernel regression function can capture
the systematic pricing patterns omitted by the Black-Scholes model. Our semi-parametric method

3Trading is led by Germany and Switzerland according to SEHK Regional Monitor (8/1/1997).



outperforms the Black-Scholes model even after a linear regression adjustment is added on to the
Black-Scholes model. This conclusion is reached irrespective of the setting being in-sample and
out-of-sample. We also find no significant difference in market pricing across derivative warrants
issued by different financial institutions, even though some issues appear to have higher Black-
Scholes implied volatilities. In other words, the perception of some warrant issuers have dominant
influence in the market place and their issues command a higher premium is more likely due to the
difference in contract specifications.

The remainder of this paper is organized as follows. An exposition of the semi-parametric
pricing method is given in Section 2. The derivative warrants data set is described in Section 3.
Empirical results are summarized in three categories and presented in Section 4. Finally, Section 5
concludes the paper.

2 Semi-parametric pricing method

Conceptually, we view a warrant price consisting of two components — an intrinsic value and a
measurement error. Specifically, the warrant price ¢; at time t is written as

ct = P(S, X, T —t,7,Zs) + & (1)

where P(Sy, X, T —t,r, Z;) stands for the intrinsic valuation function of the warrant and €; denotes
the measurement error. Naturally, the intrinsic value must be a function of S; (the underlying stock
price), X (the exercise price of the warrant), T'— ¢ (the maturity of the warrant with T being the
expiration date), r; (the risk-free interest rate), and Z; (a vector of state variables that could
potentially affect the price of warrant). State variables may include the underlying stock prices
prior to t, as, for instance, in a non-Markovian pricing setting or the local volatility that appears
in the GARCH and stochastic volatility models. State variables may also include past dividends
and interest rates.

The exact intrinsic valuation function is unknown in practice. Any implementation, either
parametric or non-parametric, thus calls for a model in its place. Although parametric models are
generally easier to implement and can be used for extrapolation, they are more prone to systematic
modeling errors. Non-parametric models, though flexible, are more data intensive and cannot
be reliably used for situations that the available data have not yet covered. In other words, its
applicability for extrapolation is a suspect. Moreover, implementing non-parametric techniques
typically faces the difficulty of identifying a suitable and small set of factors that are critical to
the performance of a model. Using a large set of factors has to be ruled out due to the “curse of
dimensionality.” In light of these considerations, we decompose the intrinsic value into two parts
with the first being a parametric model, specifically the Black-Scholes model, and the second being
the model error captured by a non-parametric technique. Specifically, the warrant price is

Ct:B(SMX?T_t?Tt)—’_nt—’_Et (2)

where B(Sy, X, T — t,r) is the Black-Scholes price for the warrant and 7, is the model error.
The above conceptual set-up bears resemblance to that of Jacquier and Jarrow (1999), although



the modeling techniques involved are quite different.* In this paper, we use the kernel regression
technique to model 7, by relating it to contract features and historical volatility of the underlying
asset.

Since measurement errors are likely to depend on the magnitude of warrant prices, we thus
employ the kernel regression technique to model the relative model error. In other words,

wi =2 = g(S, X, T~ 1,1, Z1), (3)
t

or
Cy — B(SthvT_ tvrt)

Ct

=g(Si, X, T —t,re, Z;) + €. (4)

where €] is the measurement error normalized by the warrant price. The most well-known kernel
regression method is the Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 1964). We have,
however, chosen to use a local linear kernel regression (LLKR) to model g(-) because it has been
shown to have better asymptotic and boundary properties (see Fan (1992)). We now provide a
brief description about this method and its relation to the Nadaraya-Watson estimator.

Let the observed data be a sequence of (d + 1)-dimensional vectors, denoted by {x;,y;; j =
1,...,n} where z; is a d-dimensional vector. Then, LLKR relying on solving the following quadratic
programming problem:

min Z{yj —ap(x) — Bp(x) - (x5 — x)}zK(xj —x;h) (5)

Qp ($)7ﬁh (:B) j=1

where K : R% — R is a kernel function and h € (R*)? is the bandwidth vector. The LLKR estimator
for y at the point x is the optimizer &j(x), as it defines the position of the local regression line at the
point z. The kernel function K(z; h) is generally a smooth positive function which peaks at 0 and
decreases monotonically as z increases in size. It effectively acts as a weighting scheme to ensure
that more weights are given to the observations whose covariate value x; lie closer to the point .
The minimization problem must be solved repeatedly for different x. In other words, LLKR is a
procedure of solving weighted linear regression repeatedly with different regression coefficients for
different points of interest. The Nadaraya-Watson method cast in terms of the above minimization
problem is to set Gp(x) = 0. In essence, it is a local constant kernel regression. The LLKR
estimator, when x is one-dimensional, has the following explicit solution:

G () = 1= {sa(@; h) = s1(a;h)(x; — @)} K (2 — =3 h)y;
(@) n ; sa(x; h)so(x; h) — s1(x; h)?

where s, (z;h) = 1 > 71 (xj — )" K (x5 —x; h). The explicit solution can also be obtained for higher
dimensional cases using matrix notation.

One of the crucial points in applying kernel regression is the choice of the bandwidth A, which
controls the relative importance of neighboring and distant points. The larger the bandwidth is, the

4Jacquier and Jarrow (1999) employ a Bayesian technique which requires the model error to be linear function of
some variables and assumes a specific density function for the measurement error.



smaller are the weights applying to neighboring points, which in turn causes the resulting estimator
to miss the details in the curvature of the data. As the bandwidth decreases, the estimator begins
to track the data more closely and eventually ends up interpolating the observed points. A proper
trade-off is the essence of bandwidth selection. There are situations where one may prefer to choose
the bandwidth subjectively by examining how the resulting estimator behaves. This would involve
looking at several estimators over a range of bandwidths and selecting the one that seems to be
the best. A more objective approach is to choose the bandwidth automatically using some sensible
objective criterion. In this paper, we employ a variant of the cross-validation method. Cross-
validation is to select the bandwidth based on minimizing the mean squared error between the
realized value and the estimated one. This criterion has an advantage over other distance measures
because it is quite tractable analytically.

To measure the accuracy of the estimator &p, based on a particular bandwidth A, we calculate
the theoretical mean squared error d(&y,«) by integrating over all potential realizations of z as
follows:

d(@n,0) = [ [a(a) - d(@)Pu(@p(a)de (©)

where p(x) is the density function governing the occurrence of z, w(z) is the weighting function
used in the kernel regression. The optimal bandwidth is in principle the one that minimizes the
mean squared error. In practice, it cannot be done without finding substitutes for a(z) and p(z).
Typically, the implementation uses a “leave-one-out” approach. In other words, it is to find an h
that minimizes its empirically equivalent quantity:

n

nTh Y [y — o () Pw (@) (7)

i=1

where o (z;) is the “leave-one-out” kernel estimator, i.e., the estimator for the observation at x; by
specifically excluding (z;,y;) from the data sample. In this paper, we employ a variant of the “leave-
one-out” method because it is too computationally intensive. Our cross-validation method involves
setting aside a fixed set of data points for the cross-validation purpose. We use the remaining data
points to come up with the kernel estimate for every point in this fixed cross-validation data set.
The mean squared error is then calculated over all points in this fixed cross-validation data set. In
a sense, our cross-validation method is a “leave-one-fixed-set-out” procedure. The specific fixed set
used in this paper will be described later.

In selecting the regressors to be used in the kernel regression, we also face the so-called “curse
of dimensionality” problem. Loosely speaking, the higher the dimension of x is, the sparser is a
fixed set of data points scattered in the relevant domain. There are many potential regressors
in our specific application. To decrease the dimension of the regressors, we combine some vari-
ables; for example, using the exercise price to stock price ratio X/S; is a natural way of reducing
the number of regressors. We have discarded interest rate variable from g(-) because our experi-
ments reveal that it does not enhance the performance of the kernel regression in any meaningful
way. With regard to other state variables, we have found that the historical volatility plays an
important role in explaining the derivative warrant pricing. The work by Broadie, et al. (1996)
using Nadaraya-Watson kernel regression also suggests the importance of including volatility in the



regression function. The historical volatility can in a way be viewed as a proxy, in the absence
of a definitive stochastic volatility model, to intuitively reflect the random volatility phenomenon
exhibited prominently in equity markets. To summarize, our final LLKR function contains three
regressors: the normalized exercise price and maturity of the warrant and the historical volatility
of the underlying stock.

3 Data

Our data set consists of all 59 derivative warrants series written on the common shares of Hong Kong
and Shanghai Banking Corporation Limited (hereafter, HSBC?) listed on the Hong Kong Stock
Exchange between September, 1993 and December, 1997. During this period, HSBC derivative
warrants with different maturities and exercise prices had been issued by 19 different financial
institutions. We select HSBC derivative warrants because HSBC was and continues to be the
underlying stock preferred by financial institutions in issuing derivative warrants. This preference
mainly reflects the dominant role of HSBC in the Hang Seng index, a key Hong Kong equity market
index. HSBC common stocks constitute about 10% of the Hang Seng index in terms of market
capitalization. With the high liquidity of the underlying stock, the HSBC derivative warrants are
actively traded in the market. Table-1 provides a summary of the characteristics of these warrants.
It is evident from this table that many financial institutions repeatedly issued derivative warrants
on the HSBC stock during the sample period.

Insert Table-1

The information about warrant exercise prices, expiration date, conversion ratios, dividends is
compiled from various issues of “South China Morning Post” and “Hong Kong Economic Journal
Monthly”. The units issued at initial listing, issue price and issue date are obtained from Stock
Exchange Fact Books (Hong Kong Stock Exchange, 1992 to 1997). The daily warrant closing prices
and HSBC closing prices are retrieved from the Trade Record (Equity) of the Hong Kong Stock
Exchange. Figure-1 presents the prices and historical volatilities (based on the preceding year’s
daily returns) of the HSBC stock during the sample period. It is clear from this plot that our
sample period covers a wide range of stock prices and volatilities. The conclusions reached later in
the paper are therefore likely to be applicable to a wide range of market conditions. Since there is
no guarantee that the closing stock price is recorded at the same time as the closing transaction
for each warrant, we use the best bid-ask average of the stock price traded at a warrant’s closing
transaction time as the corresponding underlying stock price for that particular warrant®. We proxy
the risk-free interest rate by using the Hong Kong Interbank Offering Rate (HIBOR) available on
Datastream. The risk-free rate for any particular maturity, if it is unavailable, is obtained by
interpolating the two HIBORs whose maturities straddle the target.

SHSBC was founded in 1865 in Shanghai. After over one hundred years of development, the bank has become one
of the biggest banks in the world. HSBC is currently a banking network with presence in 75 countries. Its shares are
listed on both London and Hong Kong Stock Exchanges.

SHong Kong Stock Exchange uses electronic limit-order book to trade stocks and derivative warrants. Every
traded security, either a common share or derivative warrant, is assigned a numerical code for trading purposes.



Insert Figure-1

Two exclusionary criteria are applied to the data set. First, we eliminate warrants with less
than one week to expiration. The shorter-term warrants have relatively small time premiums, hence
the estimation of model price is extremely sensitive to possible measurement errors. In addition,
these shorter-term warrants become inactively traded as a part of winding down process by the
issuing financial institutions. Second, observations which violate a basic arbitrage pricing bound
are excluded. We use the simple lower bound for a call option, i.e., Sy — Ke ™ where S; is the
dividend-adjusted stock price, to exclude any observation with a warrant price lower than this
bound. These exclusions leave us with 9128 observations.

4 Empirical Results

Our empirical findings are organized into three groups. First, we study the performance of the
Black-Scholes model. Second, we add a linear regression adjustment factor to the Black-Scholes
model to correct for biases if any. Finally, the empirical results based on the semi-parametric
method are presented.

4.1 Performance of the Black-Scholes model

In order to apply the Black-Scholes model, we need a volatility estimate. In some applications,
it is quite common to see that the implied volatility derived from some options is used to price
other options. The implied volatility is, however, unsuitable for our purpose of pricing derivative
warrants because we want to understand how the market warrant price is determined relative to
the underlying stock. We thus use the historical volatility calculated according to the Black-Scholes
assumption of geometric Brownian motion. Specifically, an n-day historical volatility at time ¢, i.e.,
oy, is calculated as follows:

2

1 & S
2 _ t+1—i Stg1-
0p = —— E In 5, E 2l (8)
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In a strict sense of the Black-Scholes model, the larger n is, the better is the quality of ¢;. The
reality is different, however. Since volatilities are known to change over time, a fact contrary to the
prescription of the Black-Scholes model, too large an n is likely to cause a loss of critical information
about the market condition embedded in the historical volatility. We thus use four different time
lengths in calculating the historical volatility — 1 month, 3 months, 6 months and 1 year.

Since all HSBC derivative warrants in our sample are of American type, we use the binomial
tree method to compute the warrant’s Black-Scholes price. We construct a 1000-step binomial tree
and adjust for cash dividends during the life of every warrant.

Figure-2 plots out the time series of the percentage pricing errors of the Black-Scholes model.
The Black-Scholes prices used to generated this plot are computed with the historical volatility using
the preceding year’s daily returns. It is evident that the Black-Scholes model tends to underprice



these warrants. This result suggests that the Black-Scholes implied volatility inferred from the
warrant price will in general be higher than the historical volatility, which is consistent with the
well-known phenomenon for the exchange-traded standard options. Combining Figures 1 and 2, we
see that during the high volatility periods, the Black-Scholes model actually overprices warrants.
This result is hardly surprising because a higher historical volatility, ceteris paribus, tends to cause
the model price to be higher. Such an observation also points toward the importance of including
historical volatility as a regressor in constructing the correction term.

Insert Figure-2

In Table-2, the average percentage pricing differences between the Black-Scholes model price
and the market price are reported for each individual warrant series. These results reconfirm
the earlier observation based on the plot; that is, the Black-Scholes model generally underprices
derivative warrants. Table-2 reveals that out of the 59 warrant series, 58 are underpriced by the
Black-Scholes model, and the range is from 2% to 48%. The t-statistics indicate that 34 of them
are significant at the 5% level and 24 are highly significant at the 1% level.

Insert Table-2

The previous evidence exists on the mispricing of Hong Kong’s warrants by the Black-Scholes
model, but the interpretation in these papers tends to question the efficiency of the market rather
than the reliability of the Black-Scholes model. Chan and Kwok (1991), for example, study Hong
Kong’s equity warrants and find a similar mispricing pattern. They contend that the Hong Kong
equity warrant prices are not rationally determined because warrant markets are thin. Wei (1997)
concludes after analyzing Hong Kong’s derivative warrants that warrants’ market prices are biased
upward, and he attributes this result to the short-sale restriction on derivative warrants.

Instead of questioning market efficiency, this paper explores an alternative avenue of pinning the
problem on the Black-Scholes model. We first need to understand better the nature of the mispricing
by the Black-Scholes model before a non-parametric corrective measure can be formulated. The
past study on exchange-traded standard options suggest that systematic biases mainly surface in
two dimensions - maturity and exercise price. In Table-3, the mean percentage errors (MPE), mean
squared percentage errors (MSPE) and mean absolute percentage errors (MAPE) exhibited by the
Black-Scholes model are categorized according to these two main attributes. This table contains
three panels. Panel A contains the results for the whole data set. To study the effects caused by
the recent Asian financial crisis, we divide the sample into two subperiods with the data before
August 14, 1997 reported in Panel B and the remaining ones in Panel C. As was mentioned earlier,
we use four different time lengths to calculate the historical volatility of the underlying stock. The
results are thus reported for each one of these four measures.

Insert Table-3

Table-3 indicates that MPEs are generally positive and MSPEs after the financial crisis are
particularly high. We see from this table that there is a strong positive relation between MSPE



and moneyness measured by X/S;. This relation exists for all maturity categories and for both
before and after the Asian financial crisis. It is also true for four different measures of historical
volatility. MSPEs generally increase with time to maturity for in-the-money warrants. But for at-
the-money and out-of-the-money warrants, MSPEs for shorter maturities are generally higher than
those for longer maturities. We note that using the MAPE criterion leads to similar conclusions,
which implies that our conclusions are not due to a few outliers.

4.2 The Black-Scholes model with a linear regression correction

Since the Black-Scholes model exhibits clear systematic pricing biases, it may be possible to correct
these biases using a linear regression. We thus consider four linear correction models:

Model 1: nf = ap+ a17 + a2(X/S;) + azDy.

Model 2: 7} = ag + a17 + a2(X/St) + azDye + as + a5(X/S)* + ag7(X/St)

Model 3: nf = ag + a17 + a2(X/St) + a3Dy. + asm +as(X/S))? + agT(X/St) + aroy

Model 4: 7; = ag + a17 + a2(X/St) + azDye + aa + a5(X/St)* + as7(X/St) + aror + agop.
Model 1 attempts to capture the variation in the percentage mispricing (7;) attributable to time-to-
maturity (7), degree of moneyness (X/S;) and the financial crisis (Dy, is a dummy variable with a
value of 1 if the observation is after the financial crisis and 0 if the observation is before the financial
crisis). In Model 2, we add quadratic terms to the regression, hoping to capture nonlinearity in the
Black-Scholes mispricing. We add the volatility term (oy) to the regression in Model 3 because our
earlier results suggest a strong relationship between pricing errors and volatilities. Model 4 allows
for volatility to enter in a quadratic form.

The regression results using all observations (N = 9128) are summarized in Table-4. We learn
from these results that the percentage pricing error can be in part explained away by employing
a linear regression correction. It appears that a model with quadratic terms performs better than
the one without. For example, Model 4 delivers the best performance based on the R? adjusted
for degrees of freedom regardless of which historical volatility measure is used. Among all, the
best model appears to be Model 4 using one month of daily returns in computing the historical
volatility. In this case, more than 60% of the percentage pricing errors of the Black-Scholes model
has been eliminated.

Insert Table-4

The t-statistics show a strong relation between the percentage mispricing of the Black-Scholes
model and the individual regressors. Interestingly, the dummy variable for the Asian financial crisis
is also significant, perhaps suggesting that the market structure has changed after the financial
crisis. The signs of these regression coeflicients are not stable, however. This is true across models
or using different historical volatility measures.

A simple correction model such as Model 1 (using 1 month or 3 months of daily data for the
historical volatility) implies that the warrant with a longer time to maturity and deeper in the
money tends to be underpriced more by the Black-Scholes model. Upon adding quadratic terms,
i.e., Models 2, 3 and 4, the explanatory power of the model increases, but its interpretation becomes
less clear. The fact that the quadratic terms are significant suggests that the relationship between

10



the percentage pricing errors and these explanatory variables are nonlinear. In the case of Model 3
where historical volatility is added to the regression function, a significantly negative relationship
appears. In fact, its magnitude decreases with the number of daily returns used in the historical
volatility calculation. This result is actually not at all surprising. When historical volatility is high,
it increases the Black-Scholes model value for the warrant. The Black-Scholes pricing error thus
needs a downward correction in comparison to a lower historical volatility. If we let the number of
daily returns used in calculating historical volatility increase to some point, then the information
content in the historical volatility will begin to deteriorate and gradually loses its explanatory
power.

The overall performance of the linear regression correction is best seen in the time series plot
presented in Figure-2 (the middle plot) where Model 4 and 3-month historical volatilities are used.
It is clear from this plot that the benefit of a linear regression correction almost entirely hinges on
its correction of the overall level of underpricing by the Black-Scholes model. In other words, the
pricing errors after the linear correction become centered around zero. Comparing the plots with
and without the linear correction, it appears that other aspects of the bias are little affected.

Although the linear regression correction can gain explanatory power, it may simply be a result
of in-sample over-fitting. From an application perspective, the real test rests with its performance
in an out-of-sample setting. We thus divide the data sample into two groups with one treated as
the in-sample data set and the other out-of-sample data set. The in-sample data set is actually
further divided into two subgroups. This further division is unnecessary for this part of analysis,
but it will be needed for the bandwidth selection in the case of the local linear kernel regression to
be conducted later. For consistency and avoiding confusion, we thus maintain the same grouping
throughout. The out-of-sample analysis can be conducted in two different ways. First, we construct
a model using some warrant series and use the same system to price other warrants (i.e., across
warrants), or we can construct the model using warrants in an earlier time period and use it to price
warrants in the later period (i.e., across time periods). We will conduct both types of out-of-sample
analysis.

For the across warrants analysis, we divide up 59 HSBC derivative warrants into three groups
— 30 warrant series in S7, 14 in Sy, and 15 in S3. All three groups are well balanced and cover
the whole sample periods. For the across time periods analysis, the sample is divided into three
subperiods — September, 1993 to December, 1995 in 77, January, 1996 to March, 1997 in T, after
March 1997 in 73. S; and S; together are viewed as the in-sample data set and S5 as the out-of-
sample data set for the across warrants analysis. Similarly, 77 and 75 together are viewed as the
in-sample data set and 13 as the out-of-sample data set for the across time periods analysis.

The results in Table-5 are based on Model 4 as the linear regression correction. In this table,
the ratio of MSPEs for the Black-Scholes model with and without the linear regression correction
is the focus. If the ratio is less than one, it suggests that the correction reduces the percentage
pricing error of the Black-Scholes model. The overall error reduction is much larger when the linear
regression is applied across warrants rather than across time periods. The linear correction is, of
course, expected to improve the overall in-sample performance, which is indeed the case for S;+ .95
and T + T5. For a subcategory of the in-sample data set, the linear correction need not have
a better performance, however. Interestingly, such situations do occur, for example, for in-the-
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money subcategory of 57 4+ Sa. This result suggests that the linear regression does not perform the
correction uniformly. In fact, the correction may make the model price worse for some categories
of warrants even it is used in-sample.

Insert Table-5

When the performance is cast in the out-of-sample context, the linear regression correction in
the case of the across time periods analysis becomes significantly poorer. For the across warrants
analysis, however, both in-sample and out-of-sample performances are about the same. Such a
result suggests that mispricings in different warrant series over the same time period are roughly
the same. The linear regression can be used to correct the Black-Scholes biases if the biases of
some warrant series over the same time period are known. In contrast to the across time periods
analysis, this type of out-of-sample finding is less useful because future warrant prices on a different
warrant series are not actually available at the time of making a correction.

It is reasonably to think that the Asian financial crisis may have distorted our results. We thus
restrict our attention to the sample period before August 14, 1997 and repeat the analysis. The
results in Table-5 suggest that the performance of the linear regression correction in the across
warrants analysis deteriorates significantly both in-sample and out-of-sample. For the across time
periods analysis, the out-of-sample performance actually improves. Indeed, the period of Asian
financial crisis has an important influence on our results.

4.3 The semi-parametric pricing method

Our semi-parametric pricing method couples the Black-Scholes model with a LLKR function to
correct the Black-Scholes pricing biases. As discussed earlier in Section 2, LLKR needs a bandwidth
for every regressor. The bandwidths for the three regressors of our model are to be selected by
a “leave-one-fixed-set-out” cross-validation method. The fixed set is Sy for the across warrants
analysis and Ty for the across time periods analysis. This explains why we earlier divided the
in-sample data set into two groups. Using the cross-validation criterion, we obtain the optimal
bandwidths for three regressors under various settings. The results are reported in Table-6. The
optimal bandwidths obtained this way are then used in both the in-sample and out-of-sample
analyses.

Insert Table-6

The overall performance of the semi-parametric pricing method is best seen in the bottom plot
of Figure-2 in which the pricing errors are much smaller than those under the Black-Scholes model
with or without the linear regression correction (middle plot and top plots in Figure-2). Similar to
the analysis in the preceding subsection, we also conduct the in-sample and out-of-sample analyses
and examine the ratio of the percentage pricing errors under the semi-parametric model and the
Black-Scholes model. The results are reported in Table-7. It is clear by comparing this table with
Table-6, the LLKR correction works much better than the linear regression correction. The in-
sample result is not at all surprising because the LLKR is a more flexible way of capturing data
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regularities. The out-of-sample superior performance suggests that it is not simply caused by an
in-sample over-fitting. The most significant difference between the two correction methods is the
result pertaining to the across time periods analysis. The LLKR correction works very well both in-
sample and out-of-sample, whereas the linear regression performs rather poorly. As argued earlier,
this is a more meaningful out-of-sample setting. In other words, the LLKR correction dominates
the linear regression method and particularly so for the most relevant situation.

Insert Table-7

The Asian financial crisis was found to distort the earlier result for the linear regression correc-
tion. In contrast, we find no similar distortion with the LLKR method. Restricting the attention
to the data set before the Asian financial crisis does not materially change our conclusion about
the semi-parametric pricing method. It suggests that the nature of the nonlinearity is too com-
plex to be captured by a simple inclusion of some quadratic terms in the regression function. The
non-parametric method provides a simple and reliable way of capturing the complex functional
relationship.

The analyses so far are restricted to relative performance based on ratios of the aggregate
percentage pricing errors under different methods. 1t will be informative to know the distributions
of the percentage pricing errors under different models. The out-of-sample results are summarized
in Figure-3 (across warrants analysis) and Figure-4 (across time periods analysis). These plots
provide various percentiles for the pricing errors. It is clear from these plots that the Black-Scholes
model is downward biased. The linear correction can mitigate to some extent the pricing error,
but its effectiveness is no way close to that of the LLKR. This is true for different categories of
warrants and for both the across warrants and across time periods applications.

Insert Figure-3 and Figure-4

Derivative warrants on the same underlying stock may be issued by different issuers at the same
time or at different times. The precise terms and conditions of derivative warrants often differ
across issuers to reflect the market condition at the time of issuance and/or the issuer’s general
preferences. To protect the interests of the warrant holders, the regulations require warrant issuers
to have adequate financial reserve or to secure a guarantee from the parent company. The active
warrant issuers in Hong Kong are mostly European and American financial houses’. Some warrant
issuers are dominant players in the warrant market, and they may, as a result, command a market
power that can secure a premium over their competitors; for example, investors may infer from the
reputation of these warrant issuers that their warrant series are of a higher liquidity. This potential
reputation effect is, however, intertwined with the difference in the contractual terms of warrants.
Since our semi-parametric pricing method can remove the effect of the contractual terms quite
well, it thus provides an “uncontaminated” way to examine the reputation effect. We perform a
multiple regression analysis with the dependent variable being either the percentage pricing error of
the Black-Scholes model or that of the semi-parametric pricing method. The explanatory variables

"Peregrine, a Hong Kong based financial house, was very active in derivative warrants until it went bankrupt at
the height of the Asian financial crisis.
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are 17 dummy variables to reflect there were 18 warrant issuers in the period before the Asian
financial crisis. Our results suggest that the identity of the issuer does predict the Black-Scholes
pricing error; for example, the warrants issued by BZW, Peregrine and Robert Fleming tend to
have a higher market price. Using the pricing error from the semi-parametric model, however, the
conclusion is different. The result actually suggests that no issuer can command a higher price.
This is true using the bandwidth which is selected based on either the across warrants or across
time periods sample division method. We can thus interpret our earlier significance result simply as
a failure of the Black-Scholes model to properly account for differences in contract specifications. In
short, it should be regarded as a reflection of the inadequacy of the Black-Scholes model in pricing
derivative warrants rather than a genuine issuer effect.

Insert Table-8

5 Conclusion

In this paper we devise a semi-parametric pricing method by coupling the Black-Scholes model
with a local linear kernel regression function. We use this method to conduct an empirical study
of the derivative warrants on the HSBC common stock. We find that the semi-parametric method
works well both in-sample and out-of-sample. We also find no evidence that the identity of warrant
issuer can affect the market pricing of derivative warrants.

There is a widely held belief that derivative warrants are overpriced. The fact that so many
financial houses join in to issue them seems to suggest handsome profits in these activities. The
short-sale restriction imposed on these warrants also prevents selling pressure to materialize quickly,
and hence a possibility of overpricing exists. A seemingly more direct evidence though is the result
that the market prices of derivative warrants are significantly higher than the values predicted
by the Black-Scholes model. In this study, we have refuted the evidence of overpricing based on
the Black-Scholes model. But we cannot say that derivative warrants are not overpriced. We
can conclude, however, that if overpricing occurs, it is fairly stable over time and across different
warrant series. A future analysis linking derivative warrants to exchange-traded standard options
on the same underlying stock should have the potential to answer this question.
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Table-1: Descriptive statistics for the HSBC derivative warrants.

Code Warrant Name Listing Expire Conversion Exercise  Units Issue Issuer
Date Date Ratio Price Issued  Price
(HKD)  (million) (HKD)

477 HSBC 94 (BZW) 08/12/92 06/17/94 0.1 45.5 400 1.1Barclays de Zoete Wedd Warrants Ltd.
589 HSBC 94 (Harvest) 10/15/92 04/15/94 0.1 56.5 40 1.0%arvest Top Investment Ltd.

653 HSBC 94 (Ford Deluxe) 09/24/92  09/24/94 0.1 54 80 1.35Ford Deluxe Investment Ltd.

1115 HSBC 95 (ML) 07/06/94 12/08/95 0.1 87 100 1.91Merrill Lynch International & Co. C.V.
573 HSBC 95 (Peregn) 03/24/93 02/20/95 0.1 63.5 250 1.3%eregrine Derivatives Ltd.

58 HSBC 95 (SBC) 09/09/93 08/10/95 0.1 81.5 120 1.71Swiss Bank Corp., HK

1116 HSBC 95 (SBC) 07/07/94 12/08/95 0.1 69.5 100 2.9Swiss Bank Corp., HK

768 HSBC 95 (Peregn) 11/10/93 03/20/95 0.1 79.5 100 1.5Peregrine Derivatives Ltd.

424 HSBC 96 (BZW) 03/10/94 01/31/96 01 120 250 2.98arclays de Zoete Wedd Warrants Ltdl.
630 HSBC 96 (Peregn) 02/23/94 01/17/96 0.1 109 140 3.08Peregrine Derivatives Ltd.

682 HSBC 96 (R Flem) 03/03/94 02/02/96 0.1 131 300 3.07Robert Fleming & Co. Ltd.

515 HSBC 96 (SBC) 06/15/95 06/21/96 0.1 88.25 50 2.1%Bwiss Bank Corp., HK

1226 HSBC 97 (MS) 03/13/95 02/10/97 0.1 72.45 50 2.48Morgan Stanley (Jersey) Ltd.

932 HSBC 97 (BZW) 08/16/95 01/22/97 0.1 91.8 50 2.3Barclays de Zoete Wedd Warrants Ltdl.
659 HSBC 96 (CL) 09/11/95 11/08/96 0.1 88.4 30 2.57€redit Lyonnais Fin (Guernsey) Ltd.
597 HSBC 96 (ML) 09/13/95 09/20/96 0.1 85 35 2.38Merrill Lynch Int'l & Co. C. V.

534 HSBC 96 (UBS) 12/21/95 11/28/96 01 90 20 2.86Union Bank of Switzerland

724 HSBC 97 (BT) 12/07/95 02/14/97 0.1 93.67 19 2.668ankers Trust Int'l plc

380 HSBC 97 (Peregn) 02/01/96 07/30/97 0.1 105 60 2.7 Peregrine Derivatives Ltd.

652 HSBC 97 (RF) 02/08/96 06/27/97 0.1 107.1 200 2.3Robert Fleming & Co. Ltd.

324 HSBC 97 (SBC) 02/15/96 07/24/97 0.1 111.6 25 2.518wiss Bank Corp., HK

768 HSBC 97 (BT) 03/07/96 04/29/97 0.1 110 18 2.828ankers Trust Int'l plc

914 HSBC 97 (BZW) 02/07/96 02/27/97 0.1 104.125 55 2.69BZW Warrants Ltd.

1709 HSBC 97 (ML) 06/12/96 07/21/97 0.1 105 50 2.08Vlerrill Lynch Int'l & Co. C.V.

1719 HSBC 97 (UBS) 07/25/96 11/03/97 0.1 106.2 25 2.3@nion Bank of Switzerland

1771 HSBC 97 (BZW) 10/24/96 10/04/97 0.1 131.4 55 2.587W Warrants Ltd.

1720 HSBC 97 (CL) 07/31/96 07/22/97 0.1 102.85 75 2.7Credit Lyonnais F P (G) Ltd.

1755 HSBC 97 (ML) 10/03/96 10/06/97 0.1 146 120 1 Merrill Lynch Int'l & Co. C.V.

1788 HSBC 97 (RF) 11/07/96 10/15/97 0.1 143.9 100 2.06Robert Fleming & Co. Ltd.

1741 HSBC 98 (BT) 09/11/96 02/16/98 0.1 112.2 20 3.22Bankers Trust Int' plc

1744 HSBC 98 (PARIBAS) 09/11/96 02/16/98 0.1 112.2 22.3  3.22Paribas Capital Markets Group Ltd.
1880 HSBC 97 (BZW) 02/05/97 11/14/97 0.1 177.98 65 1.58BZW Warrants Ltd.

1814 HSBC 97 (CARR) 12/11/96 11/26/97 0.1 146.7 40 2.86thdosuez W.I. Carr (D) Ltd.

1821 HSBC 97 (CL) 12/12/96 11/16/97 0.1 184.2 180 0.99€redit Lyonnais F P (G) Ltd.

1866 HSBC 97 (DMG) 01/29/97 11/21/97 0.1 176.4 54 1.68eutsche Bank AG

1928 HSBC 97 (DMG) 03/05/97 12/31/97 0.1 147 38 3.9988eutsche Bank AG

1812 HSBC 97 (ML) 12/05/96 11/20/97 0.1 176.5 230 1 Merrill Lynch Int'l & Co. C.V.

1920 HSBC 98 (ABN) 02/28/97 02/13/98 0.1 186 20 2.73ABN AMRO Bank N.V.

1898 HSBC 97 (ML) 02/19/97 11/13/97 0.1 200 100 1.28errill Lynch Int'l & Co. C.V.

1918 HSBC 98 (PARIBAS) 02/27/97 01/28/98 0.1 165.75 19 2.95Paribas Capital Markets Group Ltd.
1857 HSBC 98 (UBS) 01/22/97 01/05/98 01 165 30 2.14%nion Bank of Switzerland

2019 HSBC 98 (BZW) 06/25/97 03/26/98 0.1 220.9 60 3.758ZW Warrants Ltd.

1997 HSBC 98 (CARR) 06/04/97 06/04/98 0.1 231 25 2.244ndosuez W.I. Carr (D) Ltd.

2035 HSBC 98 (ING) 06/25/97 05/29/98 0.1 227 27.5  3.108MG Baring Financial Products

2015 HSBC 98 (ML) 06/04/97 03/31/98 0.1 231 120 2.23%/errill Lynch Int'l & Co. C.V.

2053 HSBC 98 (BEAR STEARNS)08/06/97 05/15/98 01 292.95 28 3.29Rear Stearns Co. Inc.

2170 HSBC 98 (BZW) 09/25/97 06/29/98 0.1 236 40 3.768ZW Warrants Ltd.

2085 HSBC 98 (CL) 08/06/97 05/07/98 0.1 300 56 2.679Rredit Lyonnais F P (G) Ltd.

2022 HSBC 98 (ML) 08/06/97 05/18/98 0.1 279 120 4.098errill Lynch Int'l & Co. C.V.

2127 HSBC 98 (ML) 09/12/97 06/12/98 0.1 299 100 2.3Merrill Lynch Int'l & Co. C.V.

2058 HSBC 98 (MS) 07/23/97 06/04/98 0.1 253.05 255  2.9408organ Stanley (Jersey) Ltd.

2067 HSBC 98 (MS) 08/07/97 06/17/98 0.1 292 195  3.55NMorgan Stanley (Jersey) Ltd.

2157 HSBC 98 (NW) 09/25/97 06/30/98 0.1 212.4 13.3 5.05MatWest Financial Products plc

2078 HSBC 98 (SGA) 08/06/97 05/15/98 01 292.95 17 3.158GA Societe Generale Acceptance N
2152 HSBC 98 (SGA) 09/25/97 07/01/98 01 234.15 16 3.238GA Societe Generale Acceptance N
2097 HSBC 98 (UBS) 08/06/97 05/21/98 01 275.1 28 2.968)nion Bank of Switzerland

2145 HSBC 98 (UBS) 09/24/97 06/29/98 01 260.4 35 3.5514nion Bank of Switzerland

2191 HSBC 98 (ML) 11/26/97 09/04/98 0.1 182.5 40 3.72Rerrill Lynch Int'l & Co. C.V.

2163 HSBC 98 (SGA) 12/17/97 09/30/98 0.1 185.4 12 4.708GA Societe Generale Acceptance N

V.
V.

V.

Note: The data set consists of 59 HSBC derivative warrant series which were transacted on HKSE between September 1993 and
December 1997. These derivative warrants were issued by 19 financial institutions. Information about warrants exercesipeices,

date, conversion ratios, dividends are compiled from various issues of the “South China Morning Post", the “Hong Kong Economic
Journal Monthly". The units issued at initial listing, issue price and issue date are obtained from Stock Exchange Kei¢tS6ak392

to 1997).
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Table-2: The Black-Scholes model pricing errors.

Code Warrant Name Observations Market Model Price Differences t-statistic
Price (P,) Price(Pg) [Py —Pg) Pml

477 HSBC 94 (BZW) 58 5.081069 4.938667 0.026901 0.683947
589 HSBC 94 (Harvest) 42 4.23869 4.073907 0.035176 0.654109
653 HSBC 94 (Ford Deluxe) 133 3.949511 3.8499 0.023941 0.808428
1115 HSBC 95 (ML) 305 1.604049 1.523799 0.023299 1.97364**
573 HSBC 95 (Peregn) 307 3.639072 3.368218 0.060023 3.116692***

58 HSBC 95 (SBC) 451 2.348492 1.79742 0.197292 8.104017***
1116 HSBC 95 (SBC) 265 2.634509 2.469502 0.062579 3.179536***
768 HSBC 95 (Peregn) 330 2.316824 1.807122 0.150795 5.518742***
424 HSBC 96 (BZW) 459 0.669007 0.581314 0.022387 3.435418%**
630 HSBC 96 (Peregn) 451 1.084645 0.873099 0.105409 6.244496%**
682 HSBC 96 (R Flem) 471 0.546435 0.406078 0.030072 5.148959***
515 HSBC 96 (SBC) 202 2.858416 2.717695 0.052566 2.425914***
1226 HSBC 97 (MS) 306 4.238317 4.012871 0.054126 2.460266***
932 HSBC 97 (BZW) 230 3.042065 2.849367 0.065097 3.335983***
659 HSBC 96 (CL) 222 3.220721 3.109972 0.034893 1.969971**
597 HSBC 96 (ML) 124 3.432258 3.503997 -0.02161 -1.10819
534 HSBC 96 (UBS) 125 3.2394 3.137737 0.031172 1.157002
724 HSBC 97 (BT) 113 3.050442 2.889326 0.051897 2.207475*
380 HSBC 97 (Peregn) 170 3.617265 3.420213 0.076315 0.88945
652 HSBC 97 (RF) 280 4.246107 4.072172 0.070555 0.850299
324 HSBC 97 (SBC) 189 3.645106 3.516467 0.058797 0.592896
768 HSBC 97 (BT) 229 3.620568 3.567237 0.039846 0.268961
914 HSBC 97 (BZW) 126 2.31496 2.154341 0.071986 1.438167*
1709 HSBC 97 (ML) 80 3.656312 3.583752 0.032025 0.309844
1719 HSBC 97 (UBS) 173 6.288728 6.194674 0.024451 0.297006
1771 HSBC 97 (BZW) 164 6.024238 5.895715 0.035023 0.397773
1720 HSBC 97 (CL) 28 3.817857 3.692586 0.036614 0.655596
1755 HSBC 97 (ML) 174 4.57704 4.250163 0.11518 1.064273
1788 HSBC 97 (RF) 149 5.066779 4.797005 0.081183 0.824632
1741 HSBC 98 (BT) 73 8.166863 7.568193 0.085456 1.335015*
1744 HSBC 98 (PARIBAS) 95 8.151053 7.847052 0.043192 0.825765
1880 HSBC 97 (BZW) 133 4.067143 3.743913 0.138302 1.072121
1814 HSBC 97 (CARR) 101 4.54505 4.267095 0.078367 0.958629
1821 HSBC 97 (CL) 194 3.483557 2.987101 0.257881 2.160349**
1866 HSBC 97 (DMG) 103 3.419029 3.018316 0.170503 1.386857*
1928 HSBC 97 (DMG) 23 5.667391 5.431701 0.049669 0.337
1812 HSBC 97 (ML) 183 3.523005 3.083978 0.216424 1.831025**
1920 HSBC 98 (ABN) 178 4.670112 4.175072 0.142286 1.956492**
1898 HSBC 97 (ML) 152 3.197822 2.634073 0.294644 2.440787**
1918 HSBC 98 (PARIBAS) 46 5.034783 4.578418 0.117591 0.927921
1857 HSBC 98 (UBS) 135 4.668704 4.235808 0.122837 1.485034**
2019 HSBC 98 (BZW) 126 3.591667 2.777323 0.24463 3.295074***
1997 HSBC 98 (CARR) 134 3.520634 2.590297 0.220379 4.710297***
2035 HSBC 98 (ING) 93 4.157043 3.158892 0.242381 4.059583***
2015 HSBC 98 (ML) 140 3.326643 2.22996 0.337339 5.395682***
2053 HSBC 98 (BEAR STEARNS) 67 1.538328 0.638413 0.485321 6.953143***
2170 HSBC 98 (BZW) 64 2.072266 1.639655 0.139737 2.139479*
2085 HSBC 98 (CL) 80 1.426212 0.473715 0.459081 7.78717%*
2022 HSBC 98 (ML) 95 1.630684 0.776313 0.387872 6.202318***
2127 HSBC 98 (ML) 56 1.017554 0.434708 0.436437 6.19434***
2058 HSBC 98 (MS) 99 2.690556 1.729703 0.268081 4.884574**
2067 HSBC 98 (MS) 66 1.651667 0.796965 0.403371 6.247507**
2157 HSBC 98 (NW) 49 3.270408 2.699285 0.166375 1.863618**
2078 HSBC 98 (SGA) 80 1.477925 0.603965 0.479217 7.470942%**
2152 HSBC 98 (SGA) 64 2.200234 1.710511 0.177631 2.434424%*
2097 HSBC 98 (UBS) 65 2.0312 1.027859 0.320438 5.508449**
2145 HSBC 98 (UBS) 45 1.601889 1.203872 0.095877 2.087126**
2191 HSBC 98 (ML) 24 3.9125 3.716338 0.053212 1.48219*
2163 HSBC 98 (SGA) 9 3.458333 3.436645 0.007305 0.176538

Note: *** indicates significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance
at the 10% level.
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Table-3: The percentage pricing errors by the Black-Scholes model.

Moneyness
Maturity | Historical E/S<=0.9 0.9<E/S<=1.1 E/S>1.1
Range Volatility MPE MSPE MAPE MPE MSPE MAPE MPE MSPE MAPE
0.5 1 month 0.0251 0.00454 0.03866 0.06291 0.44607 0.36258 -0.83076 7.1581 [1.29032
3 months | 0.02927 0.00395 0.03939 0.11098 0.11744 0.25427 -1.28486 5.8707 [1.58047
6 months | 0.03167 0.00362 0.03861 0.10568 0.06132 0.1918 -0.53598 1.17795 |0.69346
1 year 0.0332 0.00385 0.03932 0.06676 0.08384 0.20782 -0.01265 0.19271 [.32408
0.5 1 1 month 0.04435 0.00523 0.05211 0.20726 0.06168 0.21725 -0.60419 3.95844 |0.97965
3 months | 0.04637 0.005 0.05233 0.19112 0.06315 0.22361 -0.21965 1.10065 D.67538
Panel A: 6 months | 0.04581 0.00512 0.05205 0.2205 0.06666 0.23487 0.13522 0.33907 0.46021
Aggregate 1 year 0.04424 0.00553 0.0518 0.23003 0.07601 0.242 0.26382 0.22268 (.39883
Results
1 1.5 1 month 0.11287 0.01915 0.11556 0.22799 0.07301 0.23624 0.59229 0.40296 |0.60077
3 months | 0.10626 0.01673 0.10799 0.20837 0.04985 0.20857 0.48599 0.29067 [0.48723
6 months | 0.10155 0.01614 0.10312 0.20063 0.04831 0.20457 0.26404 0.12471 (0.27646
1 year 0.10002 0.01717 0.10276 0.16599 0.042 0.17632 -0.00937 0.04427 0.16085
1.5 1 month 0.06094 0.01486 0.10138 0.20709 0.05183 0.20877 0.15267 0.10753 |0.25818
3 months | 0.08049 0.01958 0.11338 0.22863 0.06439 0.22927 0.06939 0.03921 [0.16022
6 months | 0.09567 0.02323 0.11932 0.29121 0.09321 0.29121 0.08363 0.02917 (0.13977
1 year 0.08488 0.02787 0.13101 0.22857 0.06376 0.22857 0.36411 0.14811 [0.36506
0.5 1 month 0.02672 0.00321 0.03414 0.25052 0.12469 0.28431 0.44937 0.40985 |0.56024
3 months | 0.02801 0.00331 0.03537 0.20014 0.08774 0.23758 0.25721 0.24183 |0.39234
6 months | 0.02674 0.00286 0.03369 0.10759 0.05444 0.17744 0.03846 0.07601 [0.20662
1 year 0.02592 0.00284 0.03331 -0.01651 0.06854 0.17526 -0.1388 0.20118 p.30523
0.5 1 1 month 0.04418 0.00508 0.05124  0.22555 0.06552 0.22752 0.22293 0.12397 |0.29318
Panel B: 3 months 0.0461 0.00496 0.05203 0.21605 0.0581 0.22046  0.24885 0.18791 pP.37493
Before 6 months | 0.04483 0.00498 0.05117 0.22383 0.06158 0.22556 0.31762 0.18488 [0.35581
Financial 1 year 0.04273 0.00527 0.05041 0.21229 0.06555 0.22566  0.08065 0.1383 (.29576
Crisis
1 1.5 1 month 0.11287 0.01915 0.11556 0.22799 0.07301 0.23624 0.59229 0.40296 |0.60077
3 months | 0.10626 0.01673 0.10799 0.20837 0.04985 0.20857 0.48599 0.29067 (0.48723
6 months | 0.10155 0.01614 0.10312 0.20063 0.04831 0.20457 0.26404 0.12471 (0.27646
1 year 0.10002 0.01717 0.10276 0.16599 0.042 0.17632 -0.0094 0.04427 0.16085
1.5 1 month 0.06094 0.01486 0.10138 0.20709 0.05183 0.20877 0.15267 0.10753 |0.25818
3 months | 0.08049 0.01958 0.11338 0.22863 0.06439 0.22927 0.06939 0.03921 [0.16022
6 months | 0.09567 0.02323 0.11932 0.29121 0.09321 0.29121 0.08363 0.02917 (0.13977
1 year 0.08488 0.02787 0.13101 0.22857 0.06376 0.22857 0.36411 0.14811 [.36506
0.5 1 month 0.01827 0.01017 0.05768 -0.42575 1.28315 0.56643 -1.70124 11.7469 |1.78677
3 months | 0.03454 0.00666 0.0563 -0.12126 0.19478 0.29773 -2.33347 9.69832 (2.3884
6 months | 0.05243 0.00682 0.0593 0.1007 0.07924 0.22922 -0.9266 1.92726 [1.02451
1 year 0.06383 0.00811 0.06459 0.28365 0.1237 0.29262 0.07314 0.18695 |0.3369
0.5 1 1 month 0.05503 0.01472 0.10751 0.12467 0.04433 0.17086 -1.30538 7.20911 |1.5616
Panel C: 3 months | 0.06316 0.00768 0.07131 0.0785 0.08599 0.23782 -0.61682 1.87442 0.93008
After 6 months | 0.10801 0.01423 0.10801 0.20548 0.08961 0.2769 -0.01942 0.4698 |0.5487
Financial 1 year 0.14008 0.02185 0.14008 0.31018 0.12326 0.31582 0.4191 0.29422 D.48621
Crisis
1 1.5 1 month NaN NaN NaN NaN NaN NaN NaN NaN NaN
3 months NaN NaN NaN NaN NaN NaN NaN NaN NaN
6 months NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 year NaN NaN NaN NaN NaN NaN NaN NaN NaN
1.5 1 month NaN NaN NaN NaN NaN NaN NaN NaN NaN
3 months NaN NaN NaN NaN NaN NaN NaN NaN NaN
6 months NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 year NaN NaN NaN NaN NaN NaN NaN NaN NaN

18



Table-4: The linear regression correction of the Black-Scholes percentage pricing
errors.

Modell: n:
Model2: n:

=agtaqT+ay(X/S)+agDy

=ag +aqT +ap(X/ §)+agD +asr” +as(X/S)? +agr(X/S)

Model3:n; =ag+aT +a,(X /S;) +agD +asT2 +ag(X /S)? +agT(X 1 S) +a70,

Modeld:n; =ag+ayT+ay(X/S)+agD +asT2 +as(X /)% +agl(X [ S;) +a;0, +agof

wheren: is the percentage pricing error of the Black-Scholes madslthe time-to-maturity;X / S; is the
moneynessy,. is the dummy variable with a value of 1 after the financial crisits the historical volatility

(with four different measures}statistics are presented in the parentheses. The 1% and 5% critical values for
thet-test are 2.57 and 1.96, respectively. The 1% critical values fé+skatistics for Model 1 to Model 4
are 3.8, 2.8, 2.7 and 2.6, respectively.

Historical Coefficient Estimates Adjusted
Volatility |Model a0 al a2 a3 ad ab a6 a7 a8 R2 F-Stait
1 month (Model 1] 0.489 0.1911 -0.543 -0.7661 0.166117 607.p593
(14.138) (7.674) (-14.759) (-27.822)
Model 2[ -1.585 -1.9596 5.3682 -0.5295 -0.3689 -3.9413 2.9077 0.34616 806.3469
(-15.801) (-22.626) (28.651) (-20.777) (-8.9423) (-43.636) (36.964)
Model 3| -0.2077 -2.0971 3.6456 0.1778 0.2052 -2.6077 2.061 -2.6618 0.5P9638 1469.171
(-2.3564) (-28.534) (22.571) (7.2111) (5.6547) (-32.678) (30.215) (-59.656)
Model 4] -1.4076 -1.5253 3.7833 0.0029 0.0629 -2.4673 1.545 2471 -4.2867 0.427672 1924.293
(-17.132) (-22.965) (26.322) (0.1309) (1.9413) (-34.722) (25.084) (22.064) (-49.01)
3 months|Model 1] 0.2876 0.1544 -0.3065 -0.6342 0.194B824 734]7929
(11.852) (8.8403) (-11.874) (-32.833)
Model 2[ -0.5973 -1.0822 2.4868 -0.4643 -0.3727 -2.1071 1.9741 0.320253 717.6754
(-8.1821) (-17.171) (18.239) (-25.035) (-12.417) (-32.059) (34.486)
Model 3 0.0734 -1.3321 2.0145 -0.0282 -0.0272 -1.6418 1.6727 -1.8868 0.4010899 910.4433
(1.0451) (-22.558) (15.793) (-1.3567) (-0.9258) (-26.295) (31.038) (-37.476)
Model 4f -1.132 -0.9076 1.9284 0.0253 -0.0501 -1.3944 1.1504 4.8294 -1.9803 0.p1949 1j234.424
(-16.456) (-16.763) (16.738) (1.3452) (-1.8854) (-24.614) (23.002) (31.211) (-45.41)
6 months|Model 1] 0.0264 0.1101 0.0032 -0.1929 0.078y55 261)0831
(1.9938) (11.546) (0.2239) (-18.289)
Model 2[ -0.4365 -0.1443 1.1621 -0.1225 -0.2656 -0.8489 0.7592 0.10044 290.8417
(-10.535) (-4.033) (15.016) (-11.639) (-15.59) (-22.755) (23.365)
Model 3[ -0.1086 -0.3185 1.0444 0.0177 -0.1116 -0.6953 0.6966 -1.09 0.246638 427.8616
(-2.679) (-9.2844) (14.232) (1.6243) (-6.6314) (-19.503) (22.592) (-32.394)
Model 4 -1.0152 -0.1707 0.8059 0.0851 -0.1644 -0.5679 0.6158 5.3621 -9.0573 0.388634 126.2337
(-24.475) (-5.4941) (12.153) (8.5912) (-10.82) (-17.619) (22.128) (37.394) (-46.04)
1lyear [Model 1] -0.1001 0.1539 0.0651 0.2149 0.169216 620)6697
(-11.928) (25.473) (7.289) (32.17)
Model 2[ -0.2753 0.1192 0.457 0.2404 -0.1206 -0.2887 0.2611 0.193421 36$5.781
(-10.165) (5.1) (9.0347) (34.938) (-10.826) (-11.838) (12.295)
Model 3[ -0.1175 0.0657 0.4662 0.2576 -0.0563 -0.2241 0.2145 -0.7081 0.246889 428.437
(-4.3681) (2.8937) (9.5373) (38.544) (-5.0947) (-9.4565) (10.414) (-25.467)
Model 4 -0.3569 0.0702 0.4403 0.2609 -0.08 -0.2224 0.2479 1.0851 -34.9177 0.452942 387.2829
(-9.2689) (3.106) (9.0279) (39.136) (-7.0551) (-9.4246) (11.873) (5.1909) (-8.655)
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Table-5: The mean squared percentage pricing error ratios (the linear

regression corrected model vs. the Black-Scholes model).
For the across-warrant analysis, the sample is divided into three groups: 30 warrant series in S1, 14 in S2, and 15 in S3.
For the across-time analysis, the sample is divided into three subperiods: T1 (from Sep. 1993 to Dec. 1995), T2 (from
Jan. 1996 to Mar. 1997), and T3 (after Mar. 1997). This table presents the mean squared percentage error (MSPE) ratio,
which is the MSPE of the linear regression corrected model divided by the MSPE of the Black-Scholes model. The
results corresponding to S1+S2 or T1+T2 are based on the in-sample analysis, whereas the results for S3 or T3 are based
on the out-of-sample analysis. Each of four measures for the historical volatility (1 month, 3 months, 6 months and 1
year) is used to obtain the results.

Entire Data Set Only Observations Before
Financial Crisis
Obs. 1 Month 3 Months 6 Months 1 Year Obs. 1 Month 3 Months 6 Months 1 Year
Across warrants
Total 6650 0.137565 0.180468 0.434443 0.817035 | 5599 0.913395 1.043424 0.760511 0.756146
Before Financial Crisis (5599 1.376994 1.084723 0.88864 0.820991 5599 0.913395 1.043424 0.760511 0.756146
In the Money 4053 2.386064 1.884995 1.118634 0.777089 4053 0.729504 0.548094 0.545029 0.696176
Ratio of At the Money 337 0.844193 0.666836 0.513941 0.559043 | 337 0.510406 0.559847 0.474502 0.535547
in-sample Out of the Money 1209 1.21959 0.94309 0.861433 0.883747 1209 0.982558 1.198303 0.886809 0.816787

MSPEs Time to Maturity<=0.75 |2517 1.418838 1.365215 1.167508 0.797945 2517 1.116497 1.090976 1.099682 0.7151
(S1+S2) Time to Maturity>0.75 3082 1.351836 0.954128 0.793227 0.837068 3082 0.791365 1.021296 0.644468 0.784778
After Financial Crisis  |1051 0.029561 0.069631 0.259606 0.811841
In the Money 282 2.674663 8.375995 3.517152 2.246237

At the Money 85 0.429332 0.93336 0.521688 0.29751
Out of the Money 684 0.021221 0.055627 0.227383 0.782646
Time to Maturity<=0.75 [ 971 0.028826 0.068271 0.25689 0.833099
Time to Maturity>0.75 80 0.680486 0.56958 0.412502 0.564572

Total 2478 0.072961 0.150229 0.414522 0.767657 2038 0.619551 0.621342 0.581408 0.742677

Before Financial Crisis |2038 1.181787 0.880014 0.672408 0.757097 2038 0.619551 0.621342 0.581408 0.742677

Ratio of In the Money 1247 2.300826 1.776425 0.93745 0.75323 1247 0.698216 0.603672 0.641059 0.722361
out-sample At the Money 245 0.67931 0.705371 0.548321 0.595101 245 0.388762 0.497447 0.482969 0.556593
MSPEs Out of the Money 546 0.984218 0.652132 0.616104 0.797898 546 0.660365 0.65016 0.58463 0.795498

(S3) Time to Maturity<=0.75 | 925 1.578983 1.298929 0.755258 1.000617 925 0.566384 0.75532 0.687527 1.038999

Time to Maturity>0.75 (1113 1.063154 0.735062 0.64456 0.690821 1113 0.635428 0.574985 0.54574 0.662033
After Financial Crisis 440 0.025567 0.077908 0.307868 0.777942
In the Money 137 4.265618 1.923032 1.453377 2.33594

At the Money 49 0.508397 1.318052 1.560246 0.596827
Out of the Money 254 0.021992 0.061812 0.272339 0.720566
Time to Maturity<=0.75 | 433 0.02548 0.076875 0.307021 0.773216
Time to Maturity>0.75 7 0.283287 0.991831 1.320355 5.661759

Across time periods

Total 6656 0.856352 0.985648 0.752807 0.755847 6656 0.856352 0.985648 0.752807 0.755847

Before Financial Crisis (6656 0.856352 0.985648 0.752807 0.755847 6656 0.856352 0.985648 0.752807 0.755847

In the Money 4498 0.678967 0.535628 0.534532 0.658648 4498 0.678967 0.535628 0.534532 0.658648

Ratio of At the Money 505 0.45437 0.555547 0.485248 0.591828 505 0.45437 0.555547 0.485248 0.591828
in-sample Out of the Money 1653 0.941373 1.134445 0.874057 0.818741 1653 0.941373 1.134445 0.874057 0.818741

MSPEs Time to Maturity<=0.75 2662 1.097112 1.111283 1.152197 0.800887 2662 1.097112 1.111283 1.152197 0.800887
(T1+T2) Time to Maturity>0.75 |3994 0.739311 0.934288 0.630674 0.732837 3994 0.739311 0.934288 0.630674 0.732837
After Financial Crisis
In the Money
At the Money
Out of the Money
Time to Maturity<=0.75
Time to Maturity>0.75

Total 2472 1.521964 3.191993 2.511752 0.93282 981 0.574123 0.304016 0.382026 0.637293

Before Financial Crisis | 981 0.574123 0.304016 0.382026 0.637293 981 0.574123 0.304016 0.382026 0.637293

Ratio of In the Money 802 1.367735 0.591844 0.467788 0.435782 802 1.367735 0.591844 0.467788 0.435782
out-sample At the Money 77 0.083729 0.130212 0.242303 0.56492 77 0.083729 0.130212 0.242303 0.56492
MSPEs Out of the Money 102 0.443669 0.230048 0.391572 0.746482 102 0.443669 0.230048 0.391572 0.746482

(T3) Time to Maturity<=0.75 | 780 0.554466 0.379113 0.437644 0.700556 780 0.554466 0.379113 0.437644 0.700556

Time to Maturity>0.75 [ 201 0.614328 0.220716 0.33237 0.576199 201 0.614328 0.220716 0.33237 0.576199
After Financial Crisis (1491 1.524129 3.208678 2.581257 0.974514
In the Money 419 0.460565 0.833844 0.784609 0.877818

At the Money 134 0.346871 0.819412 0.674994 0.932201
Out of the Money 938 1.529299 3.222581 2.627731 0.982015
Time to Maturity<=0.75 11404 1.524883 3.214532 2.607029 0.984665
Time to Maturity>0.75 87 0.587758 0.591151 0.56491 0.790354
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Table-6: The bandwidth selection for the LLKR correction.

The optimal bandwidths based on the cross-validation method are reported for different regressors under different
scenarios. hl is the bandwidth for time to maturity, h2 is the bandwidth for moneyness and h3 is the bandwidth for
historical volatility.

Historical hl h2 h3
Volatility

1 month 0.616749 0.125778 0.006567
3 months 0.670924 0.147863 0.001285
6 months 0.418398 0.184017 0.002793
Entire Data Set 1 year 0.616353 0.069566 0.04161

1 month 0.886653 0.13241 0.138289
3 months 0.541713 0.077173 0.330192
6 months 0.230823 0.077213 0.093231

1 year 0.461584 0.033091 0.104281

1 month 0.389025 0.072561 0.026362
3 months 0.630932 0.13393 0.005668
6 months 1.009424 0.089275 0.040345
Before Financial 1 year 0.326865 0.050223 0.13675
Crisis 1 month 0.886653 0.13241 0.138289

3 months 0.541713 0.077173 0.330192
6 months 0.230823 0.077213 0.093231
1 year 0.461584 0.033091 0.104281

Across warrants

Across time periods

Across warrants

Across time periods
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Table-7: The mean squared percentage pricing error ratios (the LLKR

corrected model vs. the Black-Scholes model).

For the across-warrant analysis, the sample is divided into three groups: 30 warrant series in S1, 14 in S2, and 15 in S3.
For the across-time analysis, the sample is divided into three subperiods: T1 (from Sep. 1993 to Dec. 1995), T2 (from
Jan. 1996 to Mar. 1997), and T3 (after Mar. 1997). This table presents the mean squared percentage error (MSPE) ratio,
which is the MSPE of the local linear kernel regression corrected model divided by the MSPE of the Black-Scholes
model. The results corresponding to S1+S2 or T1+T2 are based on the in-sample analysis, whereas the results for S3 or
T3 are based on the out-of-sample analysis. Each of four measures for the historical volatility (1 month, 3 months, 6
months and 1 year) is used to obtain the results.

Entire Data Set Only Observations Before
Financial Crisis
Obs. 1 Month 3 Months 6 Months 1 Year Obs. 1 Month 3 Months 6 Months 1 Year
Across warrants
Total 6650 0.041596 0.028156 0.167815 0.482842 | 5599 0.411207 0.198242 0.325042 0.291643
Before Financial Crisis (5599 0.432871 0.161954 0.436814 0.403343 5599 0.411207 0.198242 0.325042 0.291643
In the Money 4053 0.318316 0.193473 0.222784 0.438698 4053 0.290333 0.225963 0.286386 0.396558
Ratio of At the Money 337 0.380028 0.443314 0.438077 0.398609 | 337 0.350155 0.569284 0.368751 0.312968

in-sample Out of the Money 1209 0.459911 0.129417 0.517103 0.392243 1209 0.440168 0.158439 0.332657 0.252218
MSPEs Time to Maturity<=0.75 2517 0.933551 0.326477 0.643677 0.398569 2517 0.891595 0.389086 0.609222 0.33415
(S1+S2) Time to Maturity>0.75 |3082 0.132069 0.085346 0.366038 0.406675 3082 0.122597 0.109378 0.227817 0.261994
After Financial Crisis  |1051 0.0075 0.011756 0.064268 0.587197
In the Money 282 0.158392 0.367215 0.34054 0.394478

At the Money 85 0.171962 0.161278 0.294823 0.517321
Out of the Money 684 0.006669 0.010899 0.058545 0.602065
Time to Maturity<=0.75 | 971 0.007159 0.011214 0.062633 0.547983
Time to Maturity>0.75 80 0.309383 0.211238 0.1563 1.043273

Total 2478 0.016905 0.039222 0.160113 0.544913 2038 0.361839 0.299799 0.403888 0.552567

Before Financial Crisis (2038 0.290947 0.282975 0.337999 0.64083 2038 0.361839 0.299799 0.403888 0.552567

Ratio of In the Money 1247 0.491303 0.429531 0.436157 0.541614 1247 0.740446 0.415557 0.385547 0.551353
out-sample At the Money 245 0.341874 0.280852 0.303055 0.583828 245 0.322798 0.324666 0.324313 0.565107
MSPEs Out of the Money 546 0.216145 0.240672 0.314665 0.691877 546 0.258345 0.261317 0.427657 0.549969

(S3) Time to Maturity<=0.75 | 925 0.503532 0.580084 0.617973 0.846423 925 0.507551 0.627899 0.645829 0.959814

Time to Maturity>0.75 1113 0.227454 0.180166 0.243895 0.584876 1113 0.318319 0.186266 0.322568 0.44174
After Financial Crisis | 440 0.005192 0.015067 0.086545 0.451505
In the Money 137 0.490342 0.155492 0.496 0.498623

At the Money 49 0.216861 0.304504 0.568304 0.760782
Out of the Money 254 0.004307 0.012677 0.073345 0.432404
Time to Maturity<=0.75 | 433 0.005176 0.014878 0.085468 0.451381
Time to Maturity>0.75 7 0.05362 0.181854 1.373792 0.839675

Across time periods

Total 6656 0.565741 0.36251 0.328896 0.375585 6656 0.565741 0.36251 0.328896 0.375585

Before Financial Crisis |6656 0.565741 0.36251 0.328896 0.375585 6656 0.565741 0.36251 0.328896 0.375585

In the Money 4498 0.402153 0.339227 0.293843 0.439988 4498 0.402153 0.339227 0.293843 0.439988

Ratio of At the Money 505 0.411782 0.571266 0.370596 0.474717 505 0.411782 0.571266 0.370596 0.474717
in-sample Out of the Money 1653 0.618951 0.3461 0.334299 0.33565 1653 0.618951 0.3461 0.334299 0.33565

MSPEs Time to Maturity<=0.75 2662 0.549304 0.597721 0.664404 0.479613 2662 0.549304 0.597721 0.664404 0.479613
(T1+T2) Time to Maturity>0.75 13994 0.573725 0.266369 0.226299 0.322441 3994 0.573725 0.266369 0.226299 0.322441
After Financial Crisis
In the Money
At the Money
Out of the Money
Time to Maturity<=0.75
Time to Maturity>0.75

Total 2472 0.027122 0.06258 0.593094 0.813355 981 0.379826 0.123425 0.142342 0.185139

Before Financial Crisis | 981 0.379826 0.123425 0.142342 0.185139 981 0.379826 0.123425 0.142342 0.185139

Ratio of In the Money 802 1.015844 0.260652 0.261735 0.263573 802 1.015844 0.260652 0.261735 0.263573
out-sample At the Money 77 0.183412 0.078573 0.091325 0.148392 77 0.183412 0.078573 0.091325 0.148392
MSPEs Out of the Money 102 0.190735 0.073644 0.106623 0.165122 102 0.190735 0.073644 0.106623 0.165122

(T3) Time to Maturity<=0.75 | 780 0.294856 0.126856 0.170319 0.222347 780 0.294856 0.126856 0.170319 0.222347

Time to Maturity>0.75 [ 201 0.553646 0.119619 0.117366 0.149203 201 0.553646 0.119619 0.117366 0.149203
After Financial Crisis 11491 0.026316 0.062228 0.607804 0.901987
In the Money 419 0.429735 1.673726 0.916324 0.672592

At the Money 134 0.397431 1.395995 0.96872 0.804458
Out of the Money 938 0.024561 0.053772 0.599338 0.919588
Time to Maturity<=0.75 11404 0.025908 0.059177 0.604149 0.929872
Time to Maturity>0.75 87 0.532832 1.426485 0.893756 0.396167
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Table-8: Testing the effect of the issuers’ identity.

The percentage pricing errors of the Black-Schloes model and those of the local linear kernel regression
corrected model are regressed on the identity of the issuer. The observations before the Asian Financial
Crisis are used for the analysis, and during this period there were 18 financial institutions issuing the

HSBC derivative warrants. The regression model takes the formag + Y aD, wheren’ is the
I

percentage pricing errors of the model andis a dummy variable that equals 1 when the warrant is

issued by institutiom and O otherwise. The historical volatilities are calculated using the preceding 3
months’ daily returng-statistics are presented in the parentheses.

Dependent Variables

Percentage Pricing Percentage Pricing Percentage Pricing

Errors of the Black- Errors of the LLKR Errors of the LLKR
Scholes Model Adjusted Model (based |Adjusted Model ( based

on the across warrants  [on the across time periods
bandwidth selection) bandwidth selection)
a0 0.00622 (0.0827) | 0.00128 (0.0212) | -0.0153  (-0.298)
al(Barclays de Zoete Wedd Warrants Ltd.) 0.16734 (2.2186) | -0.012 (-0.198) | -0.0147  (-0.285)
a2(Harvest Top Investment Ltd.) 0.02784 (0.3428) | 0.02057 (0.3146) | 0.03563  (0.6406)
a3(Ford Deluxe Investment Ltd.) 0.01271 (0.1647) | -0.0044  (-0.071) | 0.00619 (0.1171)
a4(Merrill Lynch International & Co. C.V.) 0.138 (1.8286) | -0.0161 (-0.264) | 0.00959 (0.1855)
a5(Peregrine Derivatives Ltd.) 0.17092 (2.2665) | 0.03952  (0.651) | 0.02072 (0.4012)
a6(Swiss Bank Corp., HK) 0.14577 (1.9322) | 0.03448 (0.5677) | 0.04186 (0.8101)
a7(Robert Fleming & Co. Ltd.) 0.26194 (3.4696) | 0.00094 (0.0155) | 0.00714 (0.1381)
a8(Morgan Stanley (Jersey) Ltd.) 0.05927 (0.7799) | 0.0112 (0.1831) | 0.00157 (0.0301)
a9(Credit Lyonnais Fin (Guernsey) Ltd. ) 0.113 (1.4899) | -0.0048 (-0.079) | 0.02697 (0.5192)
al0(Union Bank of Switzerland) 0.04477 (0.59) -0.0198  (-0.325) | 0.00038 (0.0074)
all(Bankers Trust Int'l plc) 0.07355 (0.9698) | -0.0268 (-0.439) | -0.0021  (-0.039)
al2(Paribas Capital Markets Group Ltd. ) 0.04878 (0.6269) | 0.00446 (0.0712) | 0.01633 (0.3064)
al3(Indosuez W.I. Carr (D) Ltd.) 0.08552 (1.1099) | -0.0362 (-0.583) | 0.01404  (0.266)
al4(Deutsche Bank AG) 0.11159 (1.4403) | -0.0433 (-0.694) | -0.0192 (-0.362)
al5(ABN AMRO Bank N.V.) 0.11513 (1.4775) | -0.0313  (-0.499) | 0.00812 (0.1521)
al6(ING Baring Financial Products) 0.06128  (0.736) -0.05 (-0.746) | 0.00406 (0.0712)
al7(Bear Stearns Co. Inc.) 0.01522 (0.1431) | 0.0152 (0.1775) | 0.0152  (0.2087)
R2 0.08156 0.0213 0.01417
F statistic 40.8881 10.7737 7.4561
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Figure-1. The HSBC Price and Return Volatility (based on the preceding year’'s
daily returns)
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Figure-2. The Percentage Pricing Errors of B-S Model, B-S Model with an OLS
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Note: The historical volatilities in B-S model are calculated based on previous three monthes' daily stock returns.
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Figure-3. The percentage pricing errors for various percentiles (5%, 25%, 50%, 75% and 95%) in the out-of-sample (across diéfet
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Figure-4. The percentage pricing errors for various percentiles (5%, 25%, 50%, 75% and 95%) in the out-of-sample (across diéfet
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